Menu

Blog

Latest posts

Nov 5, 2024

Textile energy grid charges wirelessly, can transform wearables, eradicate battery needs

Posted by in categories: energy, nanotechnology, wearables

Researchers develop nanomaterial textiles for wireless power, allowing real-time data transmission without the need for bulky batteries.

Nov 5, 2024

Meta AI Is Ready For War

Posted by in categories: military, robotics/AI

Meta is letting the US military and defense contractors use its Llama AI model for national security purposes.

Nov 4, 2024

Phys. Rev. Lett. 133, 146002

Posted by in category: materials

Revealing hidden layers in superconducting nickelates.

In a collaborative effort, researchers from the Max Planck Institute for Solid State Research (MPI-FKF) have discovered a new crystal structure in La₃Ni₂O₇, a material known to exhibit high-temperature superconductivity under high pressure.

Nov 4, 2024

AI Designs Antibodies From Scratch In ‘Landmark Moment’ For Science

Posted by in categories: biotech/medical, robotics/AI, science

Marking a major breakthrough in medical development, scientists have used AI to design antibodies from scratch.

Nov 4, 2024

Starlink pauses new subscriptions in Nairobi, cites network overload

Posted by in category: internet

Oh my. And here I was about to get Starlink.


Starlink has suspended new subscriptions in Nairobi and neighbouring Kiambu, Machakos, Narok, Murang’a and Nakuru regions, citing a network capacity overload due to increased demand.

Nov 4, 2024

Coarse-Grained Simulations of Adeno-Associated Virus and Its Receptor Reveal Influences on Membrane Lipid Organization and Curvature

Posted by in categories: biotech/medical, virtual reality

Adeno-associated virus (AAV) is a well-known gene delivery tool with a wide range of applications, including as a vector for gene therapies. However, the molecular mechanism of its cell entry remains unknown. Here, we performed coarse-grained molecular dynamics simulations of the AAV serotype 2 (AAV2) capsid and the universal AAV receptor (AAVR) in a model plasma membrane environment. Our simulations show that binding of the AAV2 capsid to the membrane induces membrane curvature, along with the recruitment and clustering of GM3 lipids around the AAV2 capsid. We also found that the AAVR binds to the AAV2 capsid at the VR-I loops using its PKD2 and PKD3 domains, whose binding poses differs from previous structural studies. These first molecular-level insights into AAV2 membrane interactions suggest a complex process during the initial phase of AAV2 capsid internalization.

Nov 4, 2024

New Research May Vindicate Einstein’s Theoretical Prediction of Massless Gravitons

Posted by in category: futurism

New research sets the most stringent limit yet on the mass of the graviton, suggesting it may indeed be massless as predicted by Einstein’s theory of gravity.

Nov 4, 2024

First data emerges from ‘direct-to-brain’ Alzheimer’s stem cell therapy trial

Posted by in categories: biotech/medical, neuroscience

The small-scale FDA-cleared trial is designed to evaluate both the safety and initial efficacy of RB-ADSCs in nine patients with Alzheimer’s. Regeneration Biomedical’s CTAD presentation focused on the first three enrolled patients, who each received a single dose of RB-ADSCs delivered directly into the lateral ventricles of the brain using an “Ommaya reservoir” – a device implanted under the scalp to bypass the blood-brain barrier, a major obstacle in Alzheimer’s treatments.

Biomarker analysis at the 12-week mark demonstrated reductions in both p-Tau and amyloid-beta – two proteins strongly associated with Alzheimer’s disease progression. In cerebrospinal fluid (CSF) samples from the three patients, p-Tau levels decreased to “normal” levels, while amyloid PET scans also showed a reduction in amyloid buildup.

Regeneration Biomedical also reported its treatment produced signs of cognitive improvement, with two of the three patients showing increased Mini-Mental State Examination (MMSE) scores, a common measure of cognitive function.

Nov 4, 2024

Towards Fine-Tuned Control of Gene Expression

Posted by in category: biotech/medical

In a groundbreaking Nature paper, researchers have developed synthetic regulatory sequences that could prevent targeted gene therapies from having effects in unwanted cell types.

More than methylation

While methylation is the most well-known regulator of gene expression, it isn’t the only thing that determines what is to be expressed when. Cis-regulatory elements (CREs), so called because they sit near the DNA sequences they regulate, are responsible for expressing the genes that are specific to each cell type [1]. While they are technically non-coding, as they do not directly code for functional proteins, CREs are critical to epigenomic function.

Nov 4, 2024

Murata Goes Flexible with Its Stretchable Printed Circuit Platform

Posted by in categories: biotech/medical, wearables

Murata is branching out from its usual ceramic components with the launch of flexible, stretchable electronics — a Stretchable Printed Circuit (SPC) platform it says is ideally positioned for wearable and medical devices.

In recent years, in the medical field, to make more accurate diagnoses, the…


Bendy, soft, stretchy devices target the wearable and medical markets.

Continue reading “Murata Goes Flexible with Its Stretchable Printed Circuit Platform” »

Page 1 of 11,93912345678Last