While it is known that auditory characteristics like loudness and tempo are associated with the physical movements of musicians, more subtle features, like timbre (also known as the “tone color” or tonal quality), are not as well understood.

An international study led by researchers at São Paulo State University (UNESP) in Brazil has identified a little-known but potentially significant threat: Asteroids that share Venus’s orbit and may completely escape current observational campaigns because of their position in the sky. These objects have not yet been observed, but they could strike Earth within a few thousand years. Their impacts could devastate large cities.
“Our study shows that there’s a population of potentially dangerous asteroids that we can’t detect with current telescopes. These objects orbit the sun, but aren’t part of the asteroid belt, located between Mars and Jupiter. Instead, they’re much closer, in resonance with Venus. But they’re so difficult to observe that they remain invisible, even though they may pose a real risk of collision with our planet in the distant future,” astronomer Valerio Carruba, a professor at the UNESP School of Engineering at the Guaratinguetá campus (FEG-UNESP) and first author of the study, told Agência FAPESP.
The study is published in the journal Astronomy & Astrophysics. The work combined analytical modeling and long-term numerical simulations to track the dynamics of these objects and assess their potential to come dangerously close to Earth.
Corn rootworms, pests responsible for billions of dollars in yearly crop losses, are evolving resistance that weakens even the latest biotechnology controls, according to a new study published in the journal Proceedings of the National Academy of Sciences.
Drawing on decades of data across multiple states, University of Arizona entomologists found that field-evolved resistance to Bacillus thuringiensis, or Bt, is undermining the effectiveness of corn that targets rootworms with the combination of Bt and RNA interference, or RNAi, a new biotech control that turns the rootworms’ own genetic instructions against them.
The research team analyzed extensive field data collected over the past two decades in 12 previous studies, including millions of rootworms evaluated across the Corn Belt, which extends from western Ohio to eastern Nebraska and northeastern Kansas.
A new physics-based algorithm clears a path toward nuclear microreactors that can autonomously adjust power output based on need, according to a University of Michigan-led study published in Progress in Nuclear Energy.
Easily transportable and able to generate up to 20 megawatts of thermal energy for heat or electricity, nuclear microreactors could be useful in remote locations such as rural communities, disaster zones, military bases or even cargo ships, in addition to other applications.
If integrated into an electrical grid, nuclear microreactors could provide stable, carbon-free energy, but they must be able to adjust power output to match shifting demand—a capability known as load following. In large reactors, staff make these adjustments manually, which would be cost-prohibitive in remote areas, imposing a barrier to adoption.
With the ability to print metal structures with complex shapes and unique mechanical properties, metal additive manufacturing (AM) could be revolutionary. However, without a better understanding of how metal AM structures behave as they are 3D printed, the technology remains too unreliable for widespread adoption in manufacturing and part quality remains a challenge.
Researchers in Lawrence Livermore National Laboratory (LLNL)’s nondestructive evaluation (NDE) group are tackling this challenge by developing first-of-their-kind approaches to look at how materials and structures evolve inside a metal AM structure during printing. These NDE techniques can become enabling technologies for metal AM, giving manufacturers the data they need to develop better simulations, processing parameters and predictive controls to ensure part quality and consistency.
“If you want people to use metal AM components out in the world, you need NDE,” said David Stobbe, group leader for NDE ultrasonics and sensors in the Materials Engineering Division (MED). “If we can prove that AM-produced parts behave as designed, it will allow them to proliferate, be used in safety-critical components in aerospace, energy and other sectors and hopefully open a new paradigm in manufacturing.”
Research led by The Hong Kong Polytechnic University finds that regional fat distribution exerts distinct effects on brain structure, connectivity and cognition, revealing patterns not explained by body mass index (BMI).
Obesity has been associated with structural and functional changes in the brain, including reductions in gray matter, disruptions in white matter and impaired connectivity, which have been associated with cognitive decline.
Previous studies frequently used BMI as the central measure of obesity, a highly generalized metric that cannot capture the biological differences in fat depots. Adipose tissue in different body regions is known to affect metabolic and inflammatory pathways differently, and earlier work has suggested that visceral (around organs in the abdominal cavity) and leg fat contribute unequally to disease risk.
Drinking any amount of alcohol likely increases the risk of dementia, suggests the largest combined observational and genetic study to date, published in BMJ Evidence-Based Medicine.
Even light drinking—generally thought to be protective, based on observational studies—is unlikely to lower the risk, which rises in tandem with the quantity of alcohol consumed, the research indicates.
Current thinking suggests that there might be an “optimal dose” of alcohol for brain health, but most of these studies have focused on older people and/or didn’t differentiate between former and lifelong non-drinkers, complicating efforts to infer causality, note the researchers.
Place cells are specialized neurons in a brain region known as the hippocampus, which have been found to fire when animals are in specific locations. These cells don’t fire randomly, but their activity is known to be organized by theta oscillations, which in rats means that they fire in sync with rhythmic brain waves between 7–9 Hz.
While many past studies have explored the role and firing patterns of place cells, the extent to which their activity is influenced by different types of spatial cues has not yet been fully elucidated. Spatial cues are essentially pieces of information that help animals and humans to determine where they are and where they should head toward to reach a desired location.
Researchers at Johns Hopkins University gathered new experimental evidence suggesting that the multiplexed theta phase coding of place cells, or, in other words, their ability to tackle different tasks in the same “wave” of theta rhythm activity, is controlled by external (i.e., allothetic) and self-motion-related (i.e., idiothetic) spatial cues.
Throughout the course of their lives, people typically encounter numerous other individuals with different interests, values and backgrounds. However, not all these individuals will become their good friends, life partners, or meaningful people in their lives.
Many past psychology and behavioral science studies investigated the relationships between different people and what contributes to their perceived affinity to others. While some of these studies linked friendship to physical proximity, interpersonal similarities and other factors, the neural patterns associated with social connections between people have not yet been fully elucidated.
Researchers at University of California Los Angeles (UCLA) and Dartmouth College recently carried out a study exploring the possibility that people who end up becoming friends exhibit similar neural activity patterns. Their findings, published in Nature Human Behavior, suggest that people are in fact drawn to others who exhibit similar emotional and mental responses to their surroundings.
Transistors, the building blocks of modern electronics, are typically made of silicon. Because it’s a semiconductor, this material can control the flow of electricity in a circuit. But silicon has fundamental physical limits that restrict how compact and energy-efficient a transistor can be.
MIT researchers have now replaced silicon with a magnetic semiconductor, creating a magnetic transistor that could enable smaller, faster, and more energy-efficient circuits. The material’s magnetism strongly influences its electronic behavior, leading to more efficient control of the flow of electricity.
The team used a novel magnetic material and an optimization process that reduces the material’s defects, which boosts the transistor’s performance.