Different atoms and ions possess characteristic energy levels. Like a fingerprint, they are unique for each species. Among them, the atomic ion 173 Yb+ has attracted growing interest because of its particularly rich energy structure, which is promising for applications in quantum technologies and searches for so-called new physics. On the flip side, the complex structure that makes 173 Yb+ interesting has long prevented detailed investigations of this ion.
Now, researchers from PTB, TU Braunschweig, and the University of Delaware have taken a closer look at the ion’s energy structure. To achieve this, they trapped a single 173 Yb+ ion and developed methods for preparing and detecting its energy state despite the complicated energy structure. This enabled high-resolution laser and microwave spectroscopy. The research is published in the journal Physical Review Letters.
In particular, the researchers investigated energy shifts arising from interactions between the nucleus and its surrounding electrons, also called hyperfine structure. Combined with first-principle theory calculations, the precise measurement results yielded new information about the ion’s nucleus.








