Toggle light / dark theme

At 92 He is Testing a Mitochondrial Transplant That Could Rewrite Aging | Dr John Cramer

Dr. John Cramer, 92-year-old nuclear physicist, discusses participating in the first mitochondrial transplant trial for aging and his longevity theory.
Some links are affiliate links so we will earn a commission when they are used to purchase products.

If you would like to support our channel please consider joining our Patreon / modernhealthspan.
~~~~~~~~~~~~~~
BiOptimizers — 15% off Code MHBIO: https://tinyurl.com/yt-bioptimize-202…(Magnesium Breakthrough, Gluten Guardian)
Stemregen — 10% off Code MODERN: https://tinyurl.com/yt-stemregen-2025… (Stem cell mobilization)
Renue — 15% off Code MHS: https://tinyurl.com/yt-renue-20251214 (Lipo NMN)
Seeking Health — 10% off Code Richard10: https://tinyurl.com/yt-seekinghea-202… (Histamine Nutrients)
AX3 — 20% off Code MODERN20: https://tinyurl.com/yt-ax3-20251214 (Astaxanthin)
n1o1 — 10% off Code Modern: https://tinyurl.com/yt-n1o1-20251214 (Nitric Oxide Lozenges)

These are affiliate links — using them supports the channel at no extra cost to you.
~~~~~~~~~~~~~~

Dr. John Cramer is a 92-year-old emeritus professor at the University of Washington who has spent decades researching nuclear physics and quantum mechanics. Now, he’s turned his attention to longevity, and he’s not just theorizing. Dr. Cramer is participating in Mitrix’s groundbreaking mitochondrial transplantation trial, which aims to replace damaged mitochondrial DNA with healthy versions grown in bioreactors.

In this conversation, Dr. Cramer explains why he believes mitochondrial dysfunction is the root cause of aging, not just another hallmark. He discusses how energy depletion cascades into all other aging symptoms, why previous interventions like telomere extension haven’t delivered, and what markers will be tracked throughout his trial. He also shares his personal longevity protocol, including rapamycin, senolytics, and hyperbaric oxygen therapy.

This is one of the first detailed discussions of autologous mitochondrial transplantation for aging in humans.

An old jeweler’s trick could unlock next-generation nuclear clocks

In 2008, a team of UCLA-led scientists proposed a scheme to use a laser to excite the nucleus of thorium atoms to realize extremely accurate, portable clocks. Last year, they realized this longstanding goal by bombarding thorium atoms embedded in specialized fluoride crystals with a laser. Now, they have found a way to dramatically simplify and strengthen the process by replacing the specialized crystals with thorium electroplated onto steel.

They observe, for the first time, that laser excitation of the thorium nucleus in this system leads to a measurable electric current, which can be used to miniaturize the nuclear clock. The advance is needed for smaller, more efficient atomic clocks, which have long been sought to improve navigation, GPS, power grids, and communications. It will also allow for some of the tightest tests ever of fundamental physics.

Direct observation reveals ‘two-in-one’ roles of plasma turbulence

Producing fusion energy requires heating plasma to more than one hundred million degrees and confining it stably with strong magnetic fields. However, plasma naturally develops fluctuations known as turbulence, and they carry heat outward and weaken confinement. Understanding how heat and turbulence spread is therefore essential.

Conventional theory has assumed that heat and turbulence move gradually from the center toward the edge. Yet experiments have sometimes shown heat and turbulence spreading much faster, similar to American football players passing a ball quickly across long distances so that a local change influences the entire field almost at once. Clarifying the cause of this rapid, long-range response has been a long-standing challenge.

A research team from the National Institute for Fusion Science carried out short-duration heating of the plasma core in the Large Helical Device and used high-precision diagnostic instruments, based on electromagnetic waves of various wavelengths, to measure temperature, turbulence, and heat propagation with fine spatial and temporal resolution.

Bill Gates’ TerraPower gets NRC green light for safety in construction of its first nuclear plant

Nuclear power company TerraPower has passed the Nuclear Regulatory Commission staff’s final safety evaluation for a permit to build a reactor in Wyoming. The Washington-based company backed by Bill Gates and NVIDIA could be the first to deploy a utility-scale, next-generation reactor in America.

TerraPower’s Natrium design pairs a small modular reactor (SMR) with an integrated thermal battery. The SMR generates 345 megawatts of continuous electrical power. The thermal battery, which stores excess heat in molten salt, allows the system to surge its output to 500 megawatts for more than five hours, generating enough energy to power 400,000 homes at maximum capacity.

“Today is a momentous occasion for TerraPower, our project partners and the Natrium design,” said company CEO Chris Levesque in a statement issued Monday. The favorable assessment “reflects years of rigorous evaluation, thoughtful collaboration with the NRC, and an unwavering commitment to both safety and innovation.”

The case for an antimatter Manhattan project

Chemical rockets have taken us to the moon and back, but traveling to the stars demands something more powerful. Space X’s Starship can lift extraordinary masses to orbit and send payloads throughout the solar system using its chemical rockets, but it cannot fly to nearby stars at 30% of light speed and land. For missions beyond our local region of space, we need something fundamentally more energetic than chemical combustion, and physics offers, or, in other words, antimatter.

When antimatter encounters ordinary matter, they annihilate completely, converting mass directly into energy according to Einstein’s equation E=mc². That c² term is approximately 10¹⁷, an almost incomprehensibly large number. This makes antimatter roughly 1,000 times more energetic than nuclear fission, the most powerful energy source currently in practical use.

As a source of energy, antimatter can potentially enable spacecraft to reach nearby stars at significant fractions of the speed of light. A detailed technical analysis by Casey Handmer, CEO of Terraform Industries, outlines how humanity could develop practical antimatter propulsion within existing spaceflight budgets, requiring breakthroughs in three critical areas; production efficiency, reliable storage systems, and engine designs that can safely harness the most energetic fuel physically possible.

This French company signs with a US data‑centre giant to build the world’s first reactor of its kind

As artificial intelligence devours electricity, a quiet nuclear revolution is taking shape deep below future data centers.

Across Europe, tech firms are staring at an uncomfortable equation: soaring digital demand, power grids near saturation, and climate goals that leave little room for more fossil fuels. A young French company now claims it can rewrite that equation with a compact reactor that hides underground and feeds on nuclear waste.

WORLDCHANGING Space Energy Supercharges AI! What it means for Nvidia, Tesla and Other AI Companies

Elon Musk plans to launch solar-powered AI satellites that could provide a nearly limitless source of energy to supercharge AI processing capacity, potentially disrupting traditional energy production and benefiting companies like Nvidia and Tesla ## ## Questions to inspire discussion.

Space Solar Power Economics.

🚀 Q: What’s the projected cost trajectory for space-based solar power? A: SpaceX could achieve $10 per watt for space solar by 2030–2032, down from previously estimated $100 per watt, with ultimate target of $1 per watt for operational systems, requiring 3–4 orders of magnitude cost reduction through Wright’s Law.

💰 Q: How much would launching 1 terawatt of space solar cost? A: Launching 1 terawatt of space solar power requires $1 trillion in launch costs alone, not including manufacturing and operational expenses.

⚡ Q: What energy advantage does space solar have over ground-based systems? A: Space solar plants generate 10x more energy than ground-based sources by operating 24/7 with double intensity, each equivalent to a nuclear power plant in output.

SpaceX Launch Capacity and Timeline.

Mitochondrial Dysfunction and Oxidative Stress in Alzheimer’s Disease

Mitochondrial ATP production by oxidative phosphorylation (OXPHOS) is essential for cellular functions, such that mitochondria are known as the powerhouses of the cell (Verschueren et al., 2019). The mitochondrial ETC consists of five enzyme complexes in the inner membrane of the mitochondria. ETC generates a charge across the inner mitochondrial membrane, which drives ATP synthase (complex V) to synthesize ATP from ADP and inorganic phosphate.

Several studies have shown impairments of all five complexes in multiple areas of the AD brain (Kim et al., 2000, 2001; Liang et al., 2008). Mitochondrial dysfunction in AD is apparent from a decrease in neuronal ATP levels, which is associated with the overproduction of ROS, and indicates that mitochondria may fail to maintain cellular energy. A substantial amount of ATP is consumed in the brain due to the high energy requirements of neurons and glia. Since an energy reserve (such as fat or glucose) is not available in the central nervous system (CNS), brain cells must continuously generate ATP to sustain neuronal function (Khatri and Man, 2013). Mitochondria are the primary source of cellular energy production, but aged or damaged mitochondria produce excess free radicals, which can reduce the supply of ATP and contribute to energy loss and mitochondrial dysfunction in AD. Importantly, oxidative damage of the promoter of the gene encoding subunit of the mitochondrial ATP synthase results in reduced levels of the corresponding protein, leading to decreased ATP production, nuclear DNA damage to susceptible genes, and loss of function (Lu et al., 2004; Reed et al., 2008).

In advanced stages of AD, substantial nitration of ATP synthase subunits can take place, leading to the irregular function of the respiratory chain (Castegna et al., 2003; Sultana et al., 2006; Reed et al., 2009). Likewise, ATP-synthase lipoxidation occurs in the hippocampus and parietal cortex of patients with mild cognitive impairment (Reed et al., 2008). Compromised OXPHOS contributes to a characteristic mitochondrial dysfunction in AD brains, leading to decreased ATP production, elevated oxidative stress, and ultimately cell death (Reddy, 2006; Reddy and Beal, 2008; Du et al., 2012). The specific mechanisms of OXPHOS deficiency in AD remain a long-standing scientific question, but the role of mitochondrial F1Fo ATP synthase dysfunction in AD-related mitochondrial OXPHOS failure is emphasized by emerging evidence (Beck et al., 2016; Gauba et al., 2019).

World’s first fast-neutron nuclear reactor to power AI data centers

French startup Stellaria secures its first power reservation from Equinix for Stellarium, the world’s first fast-neutron reactor that reduces nuclear waste.

The agreement will allow Equinix data centres to leverage the reactor’s energy autonomy, supporting sustainable, decarbonized operations and powering AI capabilities with clean nuclear energy.

The Stellarium reactor, proposed by Stellaria, is a fourth-generation fast-neutron molten-salt design that uses liquid chloride salt fuel and is engineered to operate on a closed fuel cycle.

Superconductivity for addressing global challenges

High‑energy physics has always been one of the main drivers of progress in superconducting science and technology. None of the flagship accelerators that have shaped modern particle physics could have succeeded without large‑scale superconducting systems. CERN continues to lead the efforts in this field. Its next accelerator, the High‑Luminosity LHC, relies on high-grade superconductors that were not available in industry before they were developed for high-energy physics. Tomorrow’s colliders will require a new generation of high‑temperature superconductors (HTS) to be able to realise their research potential with improved energy efficiency and long‑term sustainability.

Beyond the physics field, next‑generation superconductors have the potential to reshape key technological sectors. Their ability to transmit electricity without resistance, generate intense magnetic fields and operate efficiently at high temperatures makes them suitable for applications in fields as diverse as healthcare, mobility, computing, novel fusion reactors, zero‑emission transport and quantum technologies. This wide range of applications shows that advances driven by fundamental physics can generate broad societal impact far beyond the laboratory.

The Catalysing Impact – Superconductivity for Global Challenges event seeks to accelerate the transition from science to societal applications. By bringing together top-level researchers, industry leaders, policymakers and investors, the event provides a structured meeting point for technical expertise and strategic financing. Its purpose is not simply to present progress but to build bridges across sectors, disciplines and funding landscapes in order to move superconducting technologies from early demonstrations to impactful applications.

/* */