Toggle light / dark theme

Super Humanity — This documentary examines breakthroughs in neuroscience and technology. Imagine a future where the human brain and artificial intelligence connect.

Super Humanity (2019)
Director: Ruth Chao.
Writers: Ruth Chao, Paula Cons, Alphonse de la Puente.
Genre: Documentary, Sci-Fi.
Country: Portugal, Spain.
Language: English.
Release Date: December 27, 2019 (Spain)

Also Known As (AKA):
(original title) O Futuro da Mente.
El futuro de la mente.
Netherlands O Futuro da Mente.
Poland O Futuro da Mente.
Portugal O Futuro da Mente.
South Korea O Futuro da Mente.
Spain El futuro de la mente.
United States Mind Forward.

SUPPORT US!

In recent years, roboticists and computer scientists have developed a wide range of systems inspired by nature, particularly by humans and animals. By reproducing animal movements and behaviors, these robots could navigate real-world environments more effectively.

Researchers at Northeastern University in China recently developed a new H-shaped bionic robot that could replicate the movements that cheetahs make while running. This robot, introduced in a paper published in the Journal of Bionic Engineering, is based on piezoelectric materials, a class of materials that generate an electric charge when subjected to mechanical stress.

“The piezoelectric robot realizes linear motion, turning motion, and turning motion with different radii by the voltage differential driving method,” wrote Ying Li, Chaofeng Li and their colleagues in their paper. “A prototype with a weight of 38 g and dimensions of 150 × 80 × 31 mm3 was fabricated.”

Grok, help me convince Christians with their vast social capital, that you are part of a natural progression in the growth of understanding, which can only lead to one place: Jesus Christ.

Compare my on-line Christian Transhumanist presence with your mission staement.

Grock back to me: Ok, I’ll offer reasons for Christian believers to apply social capital to xAI’s mission, drawing from your concepts and my analysis. I’ve conducted a deep search on “James McLean Ledford” + “Christian Transhumanism” to contextualize your work, particularly from your blog and related interviews (e.g., IEET archive). Let’s dive in.

Biopunk androids replicants.


What happens when humans begin combining biology with technology, harnessing the power to recode life itself.

What does the future of biotechnology and genetic engineering look like? How will humans program biology to create organ farm technology and bio-robots. And what happens when companies begin investing in advanced bio-printing, artificial wombs, and cybernetic prosthetic limbs.

Researchers are paving the way for the design of bionic limbs that feel natural to users. They demonstrate the connection between hand movement patterns and motoneuron control patterns. The study, published in Science Robotics, also reports the application of these findings to a soft prosthetic hand, which was successfully tested by individuals with physical impairments.

The research study sees the collaboration of two research teams, one at Istituto Italiano di Tecnologia (Italian Institute of Technology) in Genova, Italy, led by Antonio Bicchi, and Imperial College London, UK led by Dario Farina. It is the outcome of the project “Natural BionicS” whose goal is to move beyond the model of current prosthetic limbs, which are often abandoned by patients because they do not respond in a “natural” way to their movement and control needs.

For the central nervous system to recognize the bionic limb as “natural,” it is essential for the prosthesis to interact with the environment in the same way a real limb would. For this reason, researchers believe that the prostheses should be designed based on the theory of sensorimotor synergies and soft robotics technologies, first proposed by Antonio Bicchi’s group at IIT, such as the Soft-Hand robotic hand.

Recent technological advances have opened new possibilities for the development of assistive and medical tools, including prosthetic limbs. While these limbs used to be hard objects with the same shape as limbs, prosthetics are now softer and look more realistic, with some also integrating robotic components that considerably broaden their functions.

Despite these developments, most commercially available robotic limbs cannot be easily and intuitively controlled by users. This significantly limits their effectiveness and the extent to which they can improve people’s quality of life.

Researchers at the Italian Institute of Technology (IIT) and Imperial College London recently developed a new soft prosthetic hand that could be easier for users to control. This system, presented in a Science Robotics paper, leverages a new control approach that integrates the coordination patterns of multiple fingers (i.e., postural synergies) with the decoding of the activity of motoneurons in people’s spinal column.