Blog

Archive for the ‘particle physics’ category

Jul 19, 2019

Could vacuum physics be revealed by laser-driven microbubbles?

Posted by in categories: cosmology, particle physics

A vacuum is generally thought to be nothing but empty space. But in fact, a vacuum is filled with virtual particle-antiparticle pairs of electrons and positrons that are continuously created and annihilated in unimaginably short time-scales.

The quest for a better understanding of vacuum physics will lead to the elucidation of fundamental questions in , which is integral in unraveling the mysteries of space, such as the Big Bang. However, the required to forcibly separate the virtual pairs and cause them to appear not as virtual particles but real particles would be 10 million times higher than current laser technology is capable of. This field intensity is the so-called Schwinger limit, named a half-century ago after the American Nobel laureate Julian Schwinger.

In 2018, scientists at Osaka University discovered a novel mechanism that they called a microbubble implosion (MBI). In MBIs, super-high-energy hydrogen ions (relativistic protons) are emitted at the moment when bubbles shrink to through the irradiation of hydrides with micron-sized spherical bubbles by ultraintense, .

Jul 17, 2019

Bottomonium particles don’t go with the flow

Posted by in categories: cosmology, evolution, particle physics

A few millionths of a second after the Big Bang, the universe was so dense and hot that the quarks and gluons that make up protons, neutrons and other hadrons existed freely in what is known as the quark–gluon plasma. The ALICE experiment at the Large Hadron Collider (LHC) can recreate this plasma in high-energy collisions of beams of heavy ions of lead. However, ALICE, as well as any other collision experiments that can recreate the plasma, cannot observe this state of matter directly. The presence and properties of the plasma can only be deduced from the signatures it leaves on the particles that are produced in the collisions.

In a new article, presented at the ongoing European Physical Society conference on High-Energy Physics, the ALICE collaboration reports the first measurement of one such signature—the elliptic flow—for upsilon produced in lead–lead LHC collisions.

The upsilon is a bottomonium particle, consisting of a bottom (often also called beauty) quark and its antiquark. Bottomonia and their charm-quark counterparts, charmonium particles, are excellent probes of the quark–gluon . They are created in the initial stages of a heavy-ion collision and therefore experience the entire evolution of the plasma, from the moment it is produced to the moment it cools down and gives way to a state in which hadrons can form.

Jul 16, 2019

Artificial intelligence designs metamaterials used in the invisibility cloak

Posted by in categories: engineering, particle physics, robotics/AI

Metamaterials are artificial materials engineered to have properties not found in naturally occurring materials, and they are best known as materials for invisibility cloaks often featured in sci-fi novels or games. By precisely designing artificial atoms smaller than the wavelength of light, and by controlling the polarization and spin of light, researchers achieve new optical properties that are not found in nature. However, the current process requires much trial and error to find the right material. Such efforts are time-consuming and inefficient; artificial intelligence (AI) could provide a solution for this problem.

The research group of Prof. Junsuk Rho, Sunae So and Jungho Mun of Department of Mechanical Engineering and Department of Chemical Engineering at POSTECH have developed a design with a higher degree of freedom that allows researchers to choose materials and design photonic structures arbitrarily by using deep learning. Their findings are published in several journals including Applied Materials and Interfaces, Nanophotonics, Microsystems & Nanoengineering, Optics Express, and Scientific Reports.

AI can be trained with a vast amount of data, and it can learn designs of various and the correlation between photonic structures and their optical properties. Using this training process, it can provide a that makes a photonic structure with desired optical properties. Once trained, it can provide a desired design promptly and efficiently. This has already been researched at various institutions in the U.S. such as MIT, Stanford University and Georgia Institute of Technology. However, the previous studies require inputs of materials and structural parameters beforehand, and adjusting photonic structures afterwards.

Jul 16, 2019

Cosmic Ray Particle Scans Reveal Details of a Mysterious Underground Vault in Russia

Posted by in category: particle physics

Hidden underneath the Naryn-Kala fortress in Derbent, Russia, is a mysterious subterranean vault — a buried structure whose original purpose has been unknown for decades. Now, thanks to clever use of scanning technology, we might finally know what the building is.

Jul 16, 2019

Have fusion, will travel

Posted by in categories: particle physics, space travel

The idea of propelling rockets and spaceships using the power of the atom is nothing new: the Manhattan Project in the mid-1940s as well as countless endeavours by NASA in the following decades all explored the possibility of using fission-based reactions to provide lift-off thrust. Today, progress made in controlled nuclear fusion has opened a new world of possibilities.

Jul 15, 2019

Path to Million Qubit Quantum Computers Using Atoms and Lasers

Posted by in categories: computing, particle physics, quantum physics

Atom Computing is building quantum computers using individually controlled atoms.

As one of the world’s leading researchers in atomic clocks and neutral atoms, Benjamin Bloom (co-founder of Atom Computing) built the world’s fastest atomic clock, and it is considered the most precise and accurate measurement ever performed.

Ben has shown that neutral atoms could be more scalable, and could build a stable solution to create and maintain controlled quantum states. He used his expertise to lead efforts at Intel on their 10nm semiconductor chip, and then to lead research and development of the first cloud-accessible quantum computer at Rigetti.

Jul 15, 2019

Physicists Reverse Time for Tiny Particles Inside a Quantum Computer

Posted by in categories: computing, mathematics, particle physics, quantum physics

Time goes in one direction: forward. Little boys become old men but not vice versa; teacups shatter but never spontaneously reassemble. This cruel and immutable property of the universe, called the “arrow of time,” is fundamentally a consequence of the second law of thermodynamics, which dictates that systems will always tend to become more disordered over time. But recently, researchers from the U.S. and Russia have bent that arrow just a bit — at least for subatomic particles.

In the new study, published Tuesday (Mar. 12) in the journal Scientific Reports, researchers manipulated the arrow of time using a very tiny quantum computer made of two quantum particles, known as qubits, that performed calculations. [Twisted Physics: 7 Mind-Blowing Findings]

At the subatomic scale, where the odd rules of quantum mechanics hold sway, physicists describe the state of systems through a mathematical construct called a wave function. This function is an expression of all the possible states the system could be in — even, in the case of a particle, all the possible locations it could be in — and the probability of the system being in any of those states at any given time. Generally, as time passes, wave functions spread out; a particle’s possible location can be farther away if you wait an hour than if you wait 5 minutes.

Jul 15, 2019

The Crisis In Theoretical Particle Physics Is Not A Moral Imperative

Posted by in categories: ethics, particle physics

Why I don’t think problems in particle theory should dictate research directions in other subfields.

Jul 14, 2019

Scientists Just Unveiled The First-Ever Photo of Quantum Entanglement

Posted by in categories: computing, particle physics, quantum physics

In an incredible first, scientists have captured the world’s first actual photo of quantum entanglement — a phenomenon so strange, physicist Albert Einstein famously described it as ‘spooky action at a distance’.

The image was captured by physicists at the University of Glasgow in Scotland, and it’s so breathtaking we can’t stop staring.

It might not look like much, but just stop and think about it for a second: this fuzzy grey image is the first time we’ve seen the particle interaction that underpins the strange science of quantum mechanics and forms the basis of quantum computing.

Jul 14, 2019

Bacteria Could Help Mass-Produce Wonder Material Graphene At Scale

Posted by in categories: particle physics, sustainability

There’s no doubting that graphene, a single layer of graphite with the atoms arranged in a honeycomb hexagonal pattern, is one of science’s most versatile new materials. Capable of doing everything from filtering the color out of whisky to creating body armor that’s stronger than diamonds, graphene exhibits some truly unique qualities. However, while some mainstream uses of graphene have emerged, its use remains limited due to the challenge of producing it at scale. The most common way to make graphene still involves using sticky tape to strip a layer of atoms off ordinary graphite.

That’s something that researchers from the University of Rochester and the Netherlands’ Delft University of Technology have been working to change. They’ve figured out a way to mass produce graphene by mixing oxidized graphite with bacteria. Their method is cost-efficient, time-efficient, and sustainable — and may just make graphene a whole lot more available in the process.

“In our research, we have used bacteria to produce graphene materials on a bulk scale, and we showed that our material is conductive, and both thinner and able to be stored longer than chemically produced graphene materials,” Anne Meyer, professor of biology at the University of Rochester, told Digital Trends. “These properties demonstrate that our bacterial graphene would be well suited for a variety of applications, such as electrical ink or lightweight biosensors. Our approach is also incredibly simple and environmentally friendly compared to chemical approaches. All we have to do is mix our bacteria with the graphene precursor material, and leave them sitting on the benchtop overnight.”

Page 1 of 15212345678Last