Toggle light / dark theme

Identification of molecular markers and exploration of the oncogenic role of exomeres in hepatocellular carcinoma

This study isolates extracellular vesicles and particles (EVPs) from hepatocellular carcinoma (HCC) cells. Biophysical and proteomic analyses demonstrate that sEVs and exomeres are distinctive entities. GALNS and MAN2B1 are identified as potential EM markers. HCC-derived EMs promote oncogenesis via several mechanisms, including PI3K/AKT/mTOR activation, cell cycle progression, and lipidomic dysregulation.

Where does Everything come from?

Sharpen your logic skills with Brilliant! Start learning for free at https://brilliant.org/sabine/ and get 20% off a premium subscription, which includes daily unlimited access!

The universe is full of a seemingly unending number of different things, from subatomic particles to plants and animals to gas giants and supernovae. But where did all of this stuff (for lack of a better word) come from? Let’s take a look.

👕T-shirts, mugs, posters and more: ➜ https://sabines-store.dashery.com/
💌 Support me on Donorbox ➜ https://donorbox.org/swtg.
👉 Transcript with links to references on Patreon ➜ / sabine.
📝 Transcripts and written news on Substack ➜ https://sciencewtg.substack.com/
📩 Free weekly science newsletter ➜ https://sabinehossenfelder.com/newsle… Audio only podcast ➜ https://open.spotify.com/show/0MkNfXl… 🔗 Join this channel to get access to perks ➜ / @sabinehossenfelder 📚 Buy my book ➜ https://amzn.to/3HSAWJW #science #physics #philosophy.
👂 Audio only podcast ➜ https://open.spotify.com/show/0MkNfXl
🔗 Join this channel to get access to perks ➜
/ @sabinehossenfelder.
📚 Buy my book ➜ https://amzn.to/3HSAWJW

#science #physics #philosophy

From fullerenes to 2D structures: A unified design principle for boron nanostructures

Boron, a chemical element next to carbon in the periodic table, is known for its unique ability to form complex bond networks. Unlike carbon, which typically bonds with two or three neighboring atoms, boron can share electrons among several atoms. This leads to a wide variety of nanostructures. These include boron fullerenes, which are hollow, cage-like molecules, and borophenes, ultra-thin metallic sheets of boron atoms arranged in triangular and hexagonal patterns.

Dr. Nevill Gonzalez Szwacki has developed a model explaining the variety of boron nanostructures. The analysis, published in the journal 2D Materials, combines more than a dozen known boron nanostructures, including the experimentally observed B₄₀ and B₈₀ fullerenes.

Using first-principles quantum-mechanical calculations, the study shows that the structural, energetic, and electronic properties of these systems can be predicted by looking at the proportions of atoms with four, five, or six bonds. The results reveal clear links between finite and extended boron structures. The B₄₀ cage corresponds to the χ₃ borophene layer, while B₆₅, B₈₀, and B₉₂ connect with the β₁₂, α, and bt borophene sheets, respectively. These structural links suggest that new boron cages could be created by using known two-dimensional boron templates.

Growth strategy enables coherent quantum transport in single-layer MoS₂ semiconductors

Two-dimensional (2D) semiconductors are thin materials (i.e., one-atom thick) with advantageous electronic properties. These materials have proved to be promising for the development of thinner, highly performing electronics, such as fitness trackers and portable devices.

A 2D semiconductor that has attracted particular interest within the electronics community is molybdenum disulfide (MoS₂), a transition-metal dichalcogenide made up of one metal atom and two chalcogen atoms. To build reliable large-area electronics based on MoS₂ layers, engineers need to uniformly grow this material over wafer-scale surfaces, minimizing defects that hinder the performance of devices.

Researchers at the Institute for Basic Science (IBS), Pohang University of Science and Technology (POSTECH) and other institutes recently introduced a new approach to grow single-layer MoS₂ on substrates while maintaining a uniform atomic arrangement. Their approach, outlined in a paper in Nature Electronics, entails a greater control of the process by which small crystal regions merge on a substrate, also known as coalescence.

Real-life ‘quantum molycircuits’ using exotic nanotubes

Molybdenum disulfide MoS2 is a groundbreaking material for electronics applications. As a two-dimensional layer similar to graphene, it is an excellent semiconductor, and can even become intrinsically superconducting under the right conditions. It’s not particularly surprising that science fiction authors have already been speculating about molycircs, fictional computer circuits built from MoS2, for years—and that physicists and engineers are directing huge research efforts at this material.

Researchers at the University of Regensburg, have many years of expertise with diverse quantum materials—in particular also with carbon nanotubes, tube-like macromolecules made from carbon atoms alone.

“It was an obvious next step to now focus on MoS2 and its fascinating properties,” said Dr. Andreas K. Hüttel, head of the research group Nanotube Electronics and Nanomechanics in Regensburg. In cooperation with Prof. Dr. Maja Remškar, Jožef Stefan Institut Ljubljana, a specialist in the crystalline growth of nanomaterials, his research group started working on based on MoS2 nanotubes.

Enlarging the Periodic Table of Laser-Cooled Molecules

A class of molecules with two valence electrons has been laser cooled and trapped for the first time.

Over the past 70 years, physicists have developed laser-based methods for controlling atoms and molecules, but much of this success has been concentrated on a few columns of the periodic table. For molecules, laser cooling has been limited to diatomic species that have a single unpaired valence electron for interacting with light. Extending laser cooling to molecules with two valence electrons has long been sought after (Fig. 1). The most promising nonreactive candidates are diatomic molecules that partner a halogen, such as fluorine (F) or chlorine (Cl), with a p-block atom, such as aluminum (Al) or thallium (Tl). Several research groups have specifically targeted AlF, AlCl, and TlF, but these molecules are difficult to work with because of their deep-ultraviolet transitions, complicated energy-level structures, and small magnetic moments.

Earth’s atmosphere may help support human life on the moon

The moon’s surface may be more than just a dusty, barren landscape. Over billions of years, tiny particles from Earth’s atmosphere have landed in the lunar soil, creating a possible source of life-sustaining substances for future astronauts. But scientists have only recently begun to understand how these particles make the long journey from Earth to the moon and how long the process has been taking place.

New research from the University of Rochester, published in Communications Earth & Environment, shows that Earth’s magnetic field may actually help guide atmospheric particles—carried by solar wind—into space, instead of blocking them. Because Earth’s magnetic field has existed for billions of years, this process could have steadily moved particles from Earth to the moon over very long periods of time.

“By combining data from particles preserved in lunar soil with computational modeling of how solar wind interacts with Earth’s atmosphere, we can trace the history of Earth’s atmosphere and its magnetic field,” says Eric Blackman, a professor in the Department of Physics and Astronomy and a distinguished scientist at URochester’s Laboratory for Laser Energetics (LLE).

/* */