Menu

Blog

Archive for the ‘particle physics’ category

May 19, 2022

UbiQD’s Quantum Dot Tech Is an Electricity Free Lighting Option for Greenhouses

Posted by in categories: food, nanotechnology, particle physics, quantum physics

Circa 2020 Electricity free grow lights using quantum dot leds.


While costs are coming down for controlled environment agriculture, electricity remains one of the highest because it has to power the LEDs that provide the lighting formula for plant growth. But a materials science company called UbiQD wants to change that by replacing electricity with a more efficient means of lighting: quantum dots.

Quantum dots are semiconductor nanoparticles that can transport electrons. When exposed to UV lighting, these particles emit lights of various colors, and can be adjusted in size to emit a specific color. For example, larger particles emit redder wavelengths, while smaller ones shift to blue.

Continue reading “UbiQD’s Quantum Dot Tech Is an Electricity Free Lighting Option for Greenhouses” »

May 19, 2022

Super-sized atoms can be used as a receiver to stream live video

Posted by in category: particle physics

When excited by lasers, a tiny glass container filled with rubidium atoms can act as a receiver for streamed video signals.

May 18, 2022

On the Edge: New Magnetic Phenomenon Discovered With Industrial Potential

Posted by in categories: nanotechnology, particle physics

Working with the tiniest magnets, Hebrew University discovers a new magnetic phenomenon with industrial potential.

For physicists, exploring the realm of the very, very small is a wonderland. Totally new and unexpected phenomena are discovered in the nanoscale, where materials as thin as 100 atoms are explored. Here, nature ceases to behave in a way that is predictable by the macroscopic law of physics, unlike what goes on in the world around us or out in the cosmos.

Dr. Yonathan Anahory at Hebrew University of Jerusalem (HU)’s Racah Institute of Physics led the team of researchers, which included HU doctoral student Avia Noah. He spoke of his astonishment when looking at images of the magnetism generated by nano-magnets, “it was the first time we saw a magnet behaving this way,” as he described the images that revealed the phenomenon of “edge magnetism.”

Continue reading “On the Edge: New Magnetic Phenomenon Discovered With Industrial Potential” »

May 18, 2022

“Visualizing the Proton” — Physicists’ Innovative Animation Depicts the Subatomic World in a New Way

Posted by in categories: particle physics, quantum physics

Try to picture a proton — the tiny, positively charged particle within an atomic nucleus — and you may envision a familiar, textbook diagram: a bundle of billiard balls representing quarks and gluons. From the solid sphere model first proposed by John Dalton in 1,803 to the quantum model put forward by Erwin Schrödinger in 1926, there is a storied timeline of physicists attempting to visualize the invisible.

May 17, 2022

A new law unchains fusion energy

Posted by in categories: nuclear energy, particle physics

Physicists at EPFL, within a large European collaboration, have revised one of the fundamental laws that has been foundational to plasma and fusion research for over three decades, even governing the design of megaprojects like ITER. The update shows that we can actually safely use more hydrogen fuel in fusion reactors, and therefore obtain more energy than previously thought.

Fusion is one of the most promising sources of future energy. It involves two atomic nuclei combining into one, thereby releasing enormous amounts of energy. In fact, we experience every day: the sun’s warmth comes from fusing into heavier helium atoms.

There is currently an international fusion research megaproject called ITER, which aims to replicate the fusion processes of the sun to create energy on the Earth. Its aim is the creation of high temperature plasma that provides the right environment for fusion to occur, producing energy.

May 16, 2022

Laser Pulses for Ultrafast Signal Processing Could Make Computers a Million Times Faster

Posted by in categories: computing, mobile phones, particle physics

Simulating complex scientific models on the computer or processing large volumes of data such as editing video material takes considerable computing power and time. Researchers from the Chair of Laser Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and a team from the University of Rochester in New York have demonstrated how the speed of fundamental computing operations could be increased in the future to up to a million times faster using laser pulses. Their findings were published on May 11, 2022, in the journal Nature.

The computing speed of today’s computer and smartphone processors is given by field-effect transistors. In the competition to produce faster devices, the size of these transistors is constantly decreased to fit as many together as possible onto chips. Modern computers already operate at the breathtaking speed of several gigahertz, which translates to several billion computing operations per second. The latest transistors measure only 5 nanometers (0.000005 millimeters) in size, the equivalent of not much more than a few atoms. There are limits to how far chip manufacturers can go and at a certain point, it won’t be possible to make transistors any smaller.

Physicists are working hard to control electronics with light waves. The oscillation of a light wave takes approximately one femtosecond, which is one-millionth of one billionth of a second. Controlling electrical signals with light could make the computers of the future over a million times faster, which is the aim of petahertz signal processing or light wave electronics.

Continue reading “Laser Pulses for Ultrafast Signal Processing Could Make Computers a Million Times Faster” »

May 15, 2022

The Standard Model of Particle Physics May Be Broken — A Physicist at the Large Hadron Collider Explains

Posted by in category: particle physics

As a physicist working at the Large Hadron Collider (LHC) at CERN

Established in 1954 and headquartered in Geneva, Switzerland, CERN is a European research organization that operates the Large Hadron Collider, the largest particle physics laboratory in the world. Its full name is the European Organization for Nuclear Research (French: Organisation européenne pour la recherche nucléaire) and the CERN acronym comes from the French Conseil Européen pour la Recherche Nucléaire.

May 14, 2022

Space Has Invisible Walls Created by Mysterious ‘Symmetrons,’ Scientists Propose

Posted by in categories: particle physics, space

Inara TabirAdmin.

As a trans woman this is a dream I yearn for.

J Bear BellOk. I can’t see it ever being a popular choice amongst traditionally gendered men, but for a trans woman this could be a huge and amazing gift.

Continue reading “Space Has Invisible Walls Created by Mysterious ‘Symmetrons,’ Scientists Propose” »

May 14, 2022

A physicist explains the standard model of particle physics may be broken

Posted by in category: particle physics

Roger Jones, a physicist working at the Large Hadron Collider (LHC) at Cern, explains how the standard model of particle physics may be broken.

May 14, 2022

Mysterious invisible walls may have been discovered in outer space

Posted by in categories: particle physics, space

“Scientists suspect that a ”fifth force” may be at work in space. This force, which they believe is mediated by a hypothetical particle called a symmetron is responsible for creating invisible walls in space.

The walls aren’t necessarily like the walls of a room. Instead, they are more like barriers. And, they could help explain an intriguing part of space that has left astronomers scratching their heads for quite a while.

BGR.

Continue reading “Mysterious invisible walls may have been discovered in outer space” »

Page 1 of 32312345678Last