Toggle light / dark theme

What if the Universe Remembers Everything? New Theory Rewrites the Rules of Physics

For over a hundred years, physics has rested on two foundational theories. Einstein’s general relativity describes gravity as the curvature of space and time, while quantum mechanics governs the behavior of particles and fields.

Each theory is highly successful within its own domain, yet combining them leads to contradictions, particularly in relation to black holes, dark matter, dark energy, and the origins of the universe.

My colleagues and I have been exploring a new way to bridge that divide. The idea is to treat information – not matter, not energy, not even spacetime itself – as the most fundamental ingredient of reality. We call this framework the quantum memory matrix (QMM).

Cracking a long-standing weakness in a classic algorithm for programming reconfigurable chips

Researchers from EPFL, AMD, and the University of Novi Sad have uncovered a long-standing inefficiency in the algorithm that programs millions of reconfigurable chips used worldwide, a discovery that could reshape how future generations of these are designed and programmed.

Many industries, including telecoms, automotive, aerospace and rely on a special breed of chip called the Field-Programmable Gate Array (FPGA). Unlike traditional chips, FPGAs can be reconfigured almost endlessly, making them invaluable in fast-moving fields where designing a custom chip would take years and cost a fortune. But this flexibility comes with a catch: FPGA efficiency depends heavily on the software used to program them.

Since the late 1990s, an algorithm known as PathFinder has been the backbone of FPGA routing. Its job: connecting thousands of tiny circuit components without creating overlaps.

Mysterious moon rust explained by oxygen coming from Earth’s ‘wind’

In 2020, scientists reported the detection of hematite, an iron oxide mineral otherwise known as rust, distributed through the higher latitudes of the moon, particularly on the nearside. This came as a surprise, considering the low concentrations of oxygen—which is required for the formation of rust—on the moon. Researchers proposed several theories to account for the origins of the oxygen in moon rust, including the degassing of volatiles from lunar magma, asteroids, comets, or large impact events.

However, the only explanation that could account for the distribution patterns of the hematite was that oxygen ions were being transported to the moon by Earth’s magnetosphere. This occurs during the five or so days per month when Earth sits between the sun and moon, allowing parts of its atmosphere to be blown onto the surface of the moon. The phenomenon is referred to as “Earth wind.” At other times, the moon is primarily exposed to the low energy hydrogen ions from solar wind.

A group of scientists has recently provided more evidence backing up this theory. The study, published in Geophysical Research Letters, sought to test whether Earth wind could produce the hematite by setting up a series of lab experiments mimicking the conditions on the lunar surface. The team did this by irradiating various iron-bearing minerals found on the moon with oxygen and hydrogen at energies expected from particles in Earth wind, as well as hydrogen ions, like those from solar wind.

Concrete ‘battery’ now packs 10 times the power

Concrete already builds our world, and now it’s one step closer to powering it, too. Made by combining cement, water, ultra-fine carbon black (with nanoscale particles), and electrolytes, electron-conducting carbon concrete (ec3, pronounced “e-c-cubed”) creates a conductive “nanonetwork” inside concrete that could enable everyday structures like walls, sidewalks, and bridges to store and release electrical energy. In other words, the concrete around us could one day double as giant “batteries.”

As MIT researchers report in a new PNAS paper, optimized electrolytes and manufacturing processes have increased the capacity of the latest ec3 supercapacitors by an order of magnitude.

In 2023, storing enough energy to meet the daily needs of the average home would have required about 45 cubic meters of ec3, roughly the amount of concrete used in a typical basement. Now, with the improved , that same task can be achieved with about 5 cubic meters, the volume of a typical basement wall.

AI-generated nanomaterial images fool even experts, study shows

Black-and-white images of pom-pom–like clusters, semi-translucent fields of tiny dark gray stars on a pale background, and countless other abstract patterns are a familiar sight in scientific papers describing the shapes and properties of newly engineered materials.

So, when research images show particles that resemble puffed popcorn or perfectly smooth “Tic Tacs,” it might not trigger our AI suspicion radar, but researchers in a recent study caution otherwise.

Microscopy images are indispensable in nanomaterials science, as they reveal the hidden intricacies and fascinating shapes that tiny particles assume, which appear to be a pile of dust to the naked eye.

Floquet Chern insulators based on nonlinear photonic crystals achieved

Over the past few years, engineers and material scientists have been trying to devise new optical systems in which light particles (i.e., photons) can move freely and in useful ways, irrespective of defects and imperfections. Topological phases, unique states of matter that are not defined by local properties, but by non-local and global features, can enable the robust movement of photons despite material defects.

Researchers at the University of Pennsylvania and University of California-Santa Barbara recently demonstrated the realization of Floquet Chern insulators, materials in which the periodic application of an oscillating light field or other external fields give rise to a unique topological phase, in a nonlinear photonic system. The insulators presented in their paper, which was published in Nature Nanotechnology, are based on nonlinear photonic crystals, materials with repeating patterns that can control the and respond differently to light of different intensities.

“Topological photonics explores photonic systems that exhibit robustness against defects and disorder, enabled by protection from underlying ,” wrote Jicheng Jin, Li He and their colleagues in their paper. “These phases are typically realized in linear optical systems and characterized by their intrinsic photonic band structures. We experimentally study Floquet Chern insulators in periodically driven nonlinear photonic crystals, where the topological phase is controlled by the polarization and the frequency of the driving field.”

One-atom-thick filter helps lithium–sulfur batteries keep their charge

Longer-lasting phones, lighter drones, electric cars that drive farther. These are just some of the possibilities thanks to a new battery separator design from University of Florida researchers and their partners.

Think of a tiny coffee filter, but this one works inside a battery. The team recently showed that a one-atom-thick filter can block sulfur chains from shuttling within the battery, potentially unlocking the long-awaited promise of lithium–sulfur batteries.

While lithium–sulfur batteries are lighter and pack more power in a lighter package compared to the more conventional lithium-ion batteries, their fatal flaw is the sulfur doesn’t cooperate well inside the system. It clumps into long chains that clog up the works, draining the battery’s power and cutting its lifespan.

Spontaneous emission behaves contrary to predictions in photonic time crystals

A new study reveals that spontaneous emission, a key phenomenon in the interaction between light and atoms, manifests in a new form within a photonic time crystal. This research, led by a KAIST team, not only overturns existing theory but further predicts a novel phenomenon: spontaneous emission excitation. The findings are published in the journal Physical Review Letters.

Professor Bumki Min’s research team from the KAIST Department of Physics, in collaboration with Professor Jonghwa Shin of the Department of Materials Science and Engineering, Professor Wonju Jeon of the Department of Mechanical Engineering, Professor Gil Young Cho of the Department of Physics, and researchers from IBS, UC Berkeley, and the Hong Kong University of Science and Technology, announced that they have proven that the decay rate in a photonic time crystal is, on the contrary, enhanced rather than being “extinguished,” as suggested by a paper published in Science in 2022. Furthermore, they predicted a new process—spontaneous emission excitation—where an atom transitions from its to an while simultaneously emitting a photon.

Spontaneous emission is the process by which an atom intrinsically emits a photon and is fundamental to quantum optics and photonic device research. Until now, control over spontaneous emission has been achieved by designing spatial structures like resonators or . However, the advent of photonic time crystals, which periodically modulate the refractive index of a medium over time, has drawn attention to the potential for control along the time axis.

Parallel atom-photon entanglement paves way for future quantum networking

A new platform developed by Illinois Grainger engineers demonstrates the utility of a ytterbium-171 atom array in quantum networking. Their work represents a key step toward long-distance quantum communication.

Researchers from The Grainger College of Engineering at the University of Illinois Urbana-Champaign have introduced a scalable platform for quantum networking with a ytterbium-171 array.

Their work, published in Nature Physics, represents a major step toward larger quantum networks and has promising implications for modular quantum computation.

Extreme pressure pushes honeycomb crystal toward quantum spin liquid, hinting at new qubit designs

The future of computing lies in the surprising world of quantum physics, where the rules are much different from the ones that power today’s devices. Quantum computers promise to tackle problems too complex for even the fastest supercomputers running on silicon chips. To make this vision real, scientists around the world are searching for new quantum materials with unusual, almost otherworldly properties.

One of the more intriguing candidates is called a quantum spin liquid—a state of matter where electron spins never settle down, even at the coldest temperatures in the universe. To date, however, preparing such a quantum state in a lab has proven stubbornly elusive. In a collaborative project with multiple institutions, scientists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory now report coming tantalizingly closer.

As explained by Argonne Senior Physicist and Group Leader Daniel Haskel, in these materials, it’s not atoms that stay fluid as in an ordinary liquid, but the tiny magnetic orientations—or spins—of electrons. Each spin wants to “get along” with its neighbors by aligning in a way that keeps everyone content. But when the spins are pushed closer together under pressure, satisfying every neighbor becomes impossible.

/* */