Toggle light / dark theme

New 3D map of the sun’s magnetic interior could improve predictions of disruptive solar flares

For the first time, scientists have used satellite data to create a 3D map of the sun’s interior magnetic field, the fundamental driver of solar activity. The research, published in The Astrophysical Journal Letters, should enable more accurate predictions of solar cycles and space weather that affects satellites and power grids.

The sun is more than just a fiery hot ball of hydrogen and helium gas. It is a giant magnetic star. Beneath the surface is a magnetic layer that is responsible for everything from the dark spots we see on its face to violent flares that erupt into space. Because of the disruption caused by solar storms, we need to know what is going on inside. We can’t directly observe the interior, so to date we have relied on models that depend on simplified assumptions. But these can be inaccurate.

To get a better idea of what is going on inside the sun, researchers from India fed 30 years of daily magnetic maps from satellites (from 1996 to 2025) into a sophisticated 3D model of the solar dynamo, the physical process that generates the sun’s magnetic field. By using this real-world data, they could track how magnetic fields move deep beneath the surface, where satellites cannot penetrate.

‘Thermal diode’ design promises to improve heat regulation, prolonging battery life

New technology from University of Houston researchers could improve the way devices manage heat, thanks to a technique that allows heat to flow in only one direction. The innovation is known as thermal rectification, and was developed by Bo Zhao, an award-winning and internationally recognized engineering professor at the Cullen College of Engineering, and his doctoral student Sina Jafari Ghalekohneh. The work is published in Physical Review Research.

A new way to steer heat

This new technology gives engineers a new way to control radiative heat with the same precision that electronic diodes control electrical currents, which means longer-lasting batteries for cell phones, electric vehicles and even satellites. It also has the potential to change our approach to AI data centers.

Chip-sized optical amplifier can intensify light 100-fold with minimal energy

Light does a lot of work in the modern world, enabling all types of information technology, from TVs to satellites to fiber-optic cables that carry the internet across oceans. Stanford physicists recently found a way to make that light work even harder with an optical amplifier that requires low amounts of energy without any loss of bandwidth, all on a device the size of a fingertip.

Similar to sound amplifiers, optical amplifiers take a light signal and intensify it. Current small-sized optical amplifiers need a lot of power to function. The new optical amplifier, detailed in the journal Nature, solves this problem by using a method that essentially recycles the energy used to power it.

“We’ve demonstrated, for the first time, a truly versatile, low-power optical amplifier, one that can operate across the optical spectrum and is efficient enough that it can be integrated on a chip,” said Amir Safavi-Naeini, the study’s senior author and associate professor of physics in Stanford’s School of Humanities and Sciences. “That means we can now build much more complex optical systems than were possible before.”

Amazon Leo satellites exceed brightness limits, study finds

Seeing a satellite zip across the night sky can be a fascinating sight. However, what may be spectacular for people on the ground is becoming a major problem for astronomers. A new study published on the arXiv preprint server has found that satellites from Amazon’s mega Leo constellation (originally known as Project Kuiper) are bright enough to disrupt astronomical research.

Amazon launched the first satellites for its Project Kuiper in April 2025. Eventually, the constellation will comprise 3,232 satellites to provide high-speed internet across the globe. However, this connectivity can come at a cost.

Sam Altman Cornered by Discovery: Intent & Emails in Elon’s OpenAI Lawsuit

Elon Musk’s lawsuit against OpenAI and his own ambitious plans for AI and tech innovations, including new devices and massive growth for his companies, are positioning him for a major impact on the tech industry, but also come with significant challenges and risks ## Questions to inspire discussion.

Legal Risk Management.

🔍 Q: How does the discovery process threaten OpenAI regardless of lawsuit outcome?

A: Discovery forces exposure of sensitive internal information including Greg Brockman’s 2017 diary entries revealing intent to become for-profit and violating prior agreements with Elon Musk, creating reputational damage and investor uncertainty even if OpenAI wins the case.

⏱️ Q: Why is lawsuit timing particularly damaging to OpenAI’s competitive position?

A: The lawsuit hits during OpenAI’s massive capital raise preparation, forcing delays in fundraising and implementation that allow competitors like Google and Anthropic to advance while OpenAI falls behind, similar to how Meta became less relevant in the AI race.

Agenus Closes Strategic Immunotherapeutic Collaboration with Zydus Lifesciences

As part of the collaboration, Agenus has granted Zydus exclusive rights to develop and commercialize BOT and BAL in India and Sri Lanka, with Agenus eligible to receive royalties on net sales in those territories.

“Closing this collaboration with Zydus strengthens our balance sheet and, critically, secures dedicated U.S. manufacturing capacity at a pivotal moment for Agenus,” continued Armen. “With these foundations in place, our focus in 2026 is disciplined execution—advancing our Phase III program, broadening paid patient access through authorized pathways, and progressing toward regulatory submission supported by one of the most substantial clinical datasets generated in [microsatellite stable] MSS colorectal cancer.”

Following the closing, the Emeryville and Berkeley, CA, biologics manufacturing facilities will be transferred to Zydus and housed under a newly formed subsidiary named Zylidac Bio. Agenus has secured committed manufacturing capacity at these U.S. sites to support BOT+BAL supply needs for its clinical trials, global access programs, and future commercialization.

EXLUMINA Founder: SpaceX Already Controls the Future of Space AI

SpaceX is well-positioned to dominate the future of space AI due to its innovative technologies, scalable satellite production, and strategic partnerships, which will enable it to efficiently deploy and operate a massive network of satellites with advanced computing capabilities ## ## Questions to inspire discussion.

Launch Economics & Infrastructure.

🚀 Q: Why is Starship essential for space AI data centers? A: Starship enables 100-1000x more satellites than Falcon 9, making orbital AI economically viable through massive scaling and lower launch costs, while Falcon 9 remains too expensive for commercial viability at scale.

🛰️ Q: What is SpaceX’s deployment plan for AI satellites? A: SpaceX plans Starlink version 3 satellites with 100 Nvidia chips each, deploying 5,000 satellites via 100 Starship launches at 50 satellites per flight to create a gigawatt-scale AI constellation by early 2030s.

📈 Q: What launch cadence gives SpaceX its advantage? A: SpaceX plans 10,000 annual launches and produces satellites at 10-100x the level of competitors, creating a monopoly on launch and manufacturing that positions them as the gatekeeper to space AI success.

Energy & Power Systems.

/* */