Toggle light / dark theme

Scientific realists hold that we are justified in believing that our best scientific theories are true. But what if those theories are inconsistent? This video examines the argument that realists are committed to believing that there are true contradictions.

I offer private tutoring in philosophy. For details please email me: [email protected].

Support me on Patreon: / kanebaker91

Donate to my PayPal: https://paypal.me/kanebaker91

My Discord: / discord.

0:00 — Introduction.

A new study involving over 700 older adults suggests that taking one gram of omega-3 daily may help slow biological aging, with effects visible in molecular markers known as epigenetic clocks.

When combined with vitamin D and regular exercise, the anti-aging benefits became even more pronounced, lowering the risks of frailty and cancer as well.

Omega-3 linked to slower aging in humans.

All of the cooling methods we’ve discussed so far work by the simple transfer of heat from a hot chip to the surrounding air. This means a chip can never get colder than the ambient temperature of the room it’s in. If we want to cool below ambient temperatures, or if we need to cool something massive like an entire data center, we need to apply some additional science. This is where chillers and thermoelectric coolers come in.

Thermoelectric cooling, also known as a Peltier device, is not very popular at the moment but has the potential to become very useful. These devices transfer heat from one side of a cooling plate to the other by consuming electricity. They use special thermoelectric materials that can create a temperature difference via an electric potential.

When a DC current flows through the device, heat is absorbed from one side and transferred to the other, allowing the “cool” side to drop below ambient temperature. Currently, these devices remain niche because they require a lot of energy to achieve significant cooling. However, researchers are working to develop more efficient versions for broader use.

We use cookies to make sure that our website works properly, as well as some optional cookies to personalise content and advertising, provide social media features and analyse how people use our site. By accepting some or all optional cookies you give consent to the processing of your personal data, including transfer to third parties, some in countries outside of the European Economic Area that do not offer the same data protection standards as the country where you live. You can decide which optional cookies to accept by clicking on “Manage preferences”, where you can also find more information about how your personal data is processed. Further information can be found in our privacy policy.

Dark energy makes up roughly 70% of the universe, yet we know nothing about it.

Around 25% of the universe is the equally mysterious dark matter, leaving just 5% for everything that we can see and touch—matter made up of atoms.

Dark energy is the placeholder name scientists have given to the unknown force causing the universe to expand faster and faster over time.

Physicists are tapping into the strange world of quantum sensors to revolutionize particle detection in the next generation of high-energy experiments.

These new superconducting detectors not only offer sharper spatial resolution but can also track events in time—essential for decoding chaotic particle collisions. By harnessing cutting-edge quantum technologies originally developed for astronomy and networking, researchers are making huge strides toward identifying previously undetectable particles, including potential components of dark matter.

Unlocking the universe with particle colliders.

IN A NUTSHELL 🚀 The ACES mission by the European Space Agency aims to redefine time measurement in space with unmatched precision. ⏱️ ACES will test Einstein’s theories of relativity by measuring how time bends, slows, and stretches under cosmic conditions. 🔬 Using advanced atomic clocks like PHARAO and SHM, ACES will explore fundamental constants

Born and brought up in East Germany, Professor Franka Kalman is a much-respected figure in the field of separation sciences. Following undergraduate and postgraduate studies at the Technical University Budapest, Hungary, where she learned about the then emerging technique of high performance liquid chromatography (HPLC), she applied that knowledge to complete her PhD looking at the analysis of novel opioid peptides at Martin Luther University Halle, Germany.

Her postdoctoral studies in the lab of the late, great Professor Csaba Horvath at Yale University, a placement that by all accounts provided both a grounding and springboard for her future career, were to be transformative and the techniques she developed there have gone on to be game-changing in the world of pharmaceutical development, analysis and quality control. Work for which she was recognized in 2012, when she was presented with the prestigious CEPharm Award from the Californian Separation Science Society (CASSS) for significant contributions to the practical application of capillary electrophoresis (CE) in the biotechnology and pharmaceutical industries.

After her time as a postdoc, she spent 13 very successful years in the pharmaceutical industry, working at the interface between science and industrial applications.