Toggle light / dark theme

A rhythmically pulsing leaf-spring DNA-origami nanoengine that drives a passive follower

DNA nano machine year 2023.


An autonomous DNA-origami nanomachine powered by the chemical energy of DNA-templated RNA-transcription-consuming nucleoside triphosphates as fuel performs rhythmic pulsations is demonstrated. In combination with a passive follower, the nanomachine acts as a mechanical driver with molecular precision.

Physicists overcome fundamental limitation of acoustic levitation

Using sound to get objects to float works well if a single particle is levitated, but it causes multiple particles to collapse into a clump in mid-air. Physicists at the Institute of Science and Technology Austria (ISTA) have now found a way to keep them apart using charge. Their findings, published in Proceedings of the National Academy of Sciences, could find applications in materials science, robotics, and microengineering.

Who hasn’t dreamed of overcoming gravity and getting objects to hover above ground?

In 2013, Scott Waitukaitis, now an assistant professor at the Institute of Science and Technology Austria (ISTA), became interested in using acoustic levitation as a tool to study various physical phenomena. At that time, only a handful of research groups were using this technique for similar purposes.

AI that sees and speaks

Naoufel werghi, professor of computer science at the centre for cyber-physical systems, khalifa university.

Naoufel Werghi aims not only to replicate the human visual system, but to extend its capabilities so that machines can perceive patterns invisible to the eye and process information at scales beyond human capacity.

I started my PhD working on robots that can ‘see’—machines capable of sensing the environment, analyzing images and making decisions. As I delved deeper, I realized that I was grappling with the same fundamental problems that once preoccupied David Marr, a visionary neuroscientist and the founder of modern computer vision. He believed that for robots to see, we first needed computers to analyze images and understand the context.

Digital twins for in vivo metabolic flux estimations in patients with brain cancer

Quantifying metabolic activity in patient tumors could advance personalized cancer targeting. Meghdadi et al. develop a digital twin framework using machine learning to quantify metabolic fluxes in tissues from patients with glioma, identifying which patients may benefit from different targeted metabolic therapies like specialized diets or pharmacologic agents.

AI With Integrity: Leading Innovation Responsibly

• Ensuring ethical leadership at all levels.

Ethical considerations must be integrated into every phase of AI development—not added as an afterthought.

As AI transforms business, responsible leadership will unlock new possibilities. Responsible AI is not just about compliance—it is a strategic advantage that builds trust and drives sustainable growth in an era where technology should benefit every part of society. In domains such as supply chain management, local decisions can have global consequences. Ethical AI enables progress that stays true to shared values across all points of influence. Fair, transparent and accountable by design—this is how institutions can trust innovation to build smarter systems and a better world.

[News] Silicon Photonics Momentum Builds: Samsung Ramps R&D in Singapore, UMC Teams With IMEC

With AI compute demands soaring, silicon photonics is emerging as a next-generation technology poised to reshape the landscape. According to Hankyung, sources say that Samsung Electronics’ Device Solutions (DS) Division has designated the technology as a future strategic priority and begun recruiting experts for its Singapore-based R&D center, led by Vice President King-Jien Chui, a former TSMC executive. The report highlights that Samsung is expanding its team in Singapore and working with Broadcom to move the technology toward commercialization.

As the report indicates, citing industry sources, Samsung’s 2027 target for CPO (Co-Packaged Optics) commercialization suggests that its real contest with TSMC will begin at that point. By 2030—when silicon photonics is expected to be applied at the individual-chip level—the technology will likely become the central battleground of the foundry market. Although TSMC currently leads, Samsung is gearing up, viewing the technology as a key to attracting major foundry clients, the report adds.

Artificial tendons give muscle-powered robots a boost

Our muscles are nature’s actuators. The sinewy tissue is what generates the forces that make our bodies move. In recent years, engineers have used real muscle tissue to actuate “biohybrid robots” made from both living tissue and synthetic parts. By pairing lab-grown muscles with synthetic skeletons, researchers are engineering a menagerie of muscle-powered crawlers, walkers, swimmers, and grippers.

But for the most part, these designs are limited in the amount of motion and power they can produce. Now, MIT engineers are aiming to give bio-bots a power lift with artificial tendons.

In a study published in the journal Advanced Science, the researchers developed artificial tendons made from tough and flexible hydrogel. They attached the rubber band-like tendons to either end of a small piece of lab-grown muscle, forming a “muscle-tendon unit.” Then they connected the ends of each artificial tendon to the fingers of a robotic gripper.

/* */