Here, the authors develop novel dynamical methods to model brain regions’ intrinsic neural timescales (INTs) from data, and find that they couple whole-brain structural connectivity to dynamic switching between brain activity states, and correlate with genetic markers.
Can humans live for thousands of years? New DNA and longevity research suggests that aging may not be fixed—it may simply be the result of imperfect cellular repair. In this video, we explore how DNA damage, genetic repair mechanisms, and modern longevity science are reshaping our understanding of human lifespan.
This content is based on current research from USA and Europe, focusing on emerging breakthroughs in genetics, DNA repair therapies, and anti-aging science. If you’re interested in health, biology, or the future of human longevity, this video is for you.
Disclaimer: This video is for educational purposes only, is not intended to diagnose, treat, or cure any condition, and does not replace professional medical advice. Always consult a qualified healthcare provider for guidance related to your health.
In laboratory models, researchers at The University of Texas MD Anderson Cancer Center discovered that a mother’s circadian rhythms, or internal body clock, can influence the immune system states of her offspring, which can accurately predict the risk of bacterial infection.
These findings offer novel insights into non-genetic factors shaping immune defenses and provide a framework to study circadian rhythms as a possible reason why some patients might be more vulnerable to getting infections during disease treatment. The study, published in Science Advances, was led by Alejandro Aballay, Ph.D., professor of Genetics and dean of the UTHealth Houston Graduate School of Biomedical Sciences.
“These findings reveal a circadian mechanism that can create significant differences in infection outcomes even when genetics and environment are similar,” Aballay said. “This circadian control may help explain why patients with comparable risk profiles often experience very different responses to infection.”
A new international study led by Prof. Carmit Levy of the Department of Human Genetics and Biochemistry at the Gray Faculty of Medical & Health Sciences at Tel Aviv University finds that melanoma cancer cells paralyze immune cells by secreting extracellular vesicles (EVs), which are tiny, bubble-shaped containers secreted from a given cell. The research team believes that this discovery has far-reaching implications for possible treatments for the deadliest form of skin cancer.
Melanoma is the deadliest type of skin tumor. In the first stage of the disease, melanocytic cells divide uncontrollably in the skin’s outer layer, the epidermis. In the second stage, the cancer cells invade the inner dermis layer and metastasize through the lymphatic and blood systems.
This study assessed the endophenotypic potential of striatal dopamine transporter uptake in carriers of Parkinson disease–associated SNCA genetic risk variants.
ObjectivesThe aim of this study was to investigate the endophenotypic potential of striatal dopamine transporter (DAT) uptake in carriers of Parkinson disease (PD)–associated SNCA genetic risk variants. MethodsWe analyzed 381 patients with de novo PD from the Parkinson’s Progression Markers Initiative (PPMI). The genotype of previously identified PD-related SNCA risk variants was extracted and used to compute an individual PD-specific SNCA genetic risk score (GRS). Striatal DAT uptake was quantified using 123 I‐FP‐CIT SPECT and assessed at baseline and 24-month follow-up. Mixed models were applied to explore the relationship between striatal 123 I‐FP‐CIT SPECT specific binding ratios (SBRs) and PD SNCA risk variants.
We tend to emphasize the maternal role in development: an egg cell is enormous compared to a sperm cell, and a mother gestates the embryo. But a growing body of research suggests that sperm cells carry more than just genetic information.
Research into how a father’s choices — such as diet, exercise, stress, nicotine use — may transfer traits to his children has become impossible to ignore.
An intriguing paper by Lin et al. where cells were engineered to express a signaling pathway that transcribes a gene of interest upon generation of reactive oxygen species (ROS) by CBCFO nanoparticles in response to applied electromagnetic fields. When implanted in a mouse model of diabetes, nanoparticle-treated genetically engineered cells produced insulin and decreased blood glucose levels in the mice after electromagnetic field application.
Wireless magnetic control of gene expression in mammalian cells has been developed based on intracellular nanointerface and ROS-mediated signalling. The approach allows remotely tunable insulin release and regulates blood glucose in diabetic mice.
Harvard Medical School researchers have uncovered crucial insights into how an emerging class of antiviral drugs works.
The discovery sheds light on an important tool for fighting drug-resistant strains of herpes simplex virus, or HSV, and points to new pathways for treating herpesviruses and other kinds of DNA viruses (those that have DNA as their genetic material and can replicate inside host cells).
Scientists at Johns Hopkins Medicine say results of a new study are advancing efforts to exploit a new target for Alzheimer’s disease: a protein that manufactures an important gas in the brain.
Experiments conducted in genetically engineered mice reinforce that the protein, Cystathionine γ-lyase, or CSE—ordinarily known for producing hydrogen sulfide gas responsible for the foul smell of rotten eggs—is critical for memory formation, says Bindu Paul, M.S., Ph.D., associate professor of pharmacology, psychiatry and neuroscience at the Johns Hopkins University School of Medicine, who led the study.
The new research, published in Proceedings of the National Academy of Sciences, was designed to better understand the basic biology of the protein, and its value as a novel target for drugs that boost the expression of CSE in people to help keep brain cells healthy and slow neurodegenerative disease.
Polygenic scores for hypertrophic and dilated cardiomyopathies independently and oppositely modified disease risk and penetrance of pathogenic variants, supporting bidirectional genetic influences on Cardiomyopathy.
Question How is risk of hypertrophic and dilated cardiomyopathy modified by polygenic background?
Findings In this cross-sectional study including 49 434 individuals in the Penn Medicine BioBank, polygenic scores for hypertrophic and dilated cardiomyopathies were associated with clinical and echocardiographic measures relevant to both diseases and inversely modified the penetrance of pathogenic variants.
Meaning The findings indicate that polygenic background exists on an overlapping, opposing spectrum and may contribute to hypertrophic and dilated cardiomyopathy susceptibility.