Toggle light / dark theme

Merge Labs, Sam Altman, genetic targeting, ultrasound systems, Open AI, mechanosensitive channels

In recent years, neuroengineers have devised a number of new modalities for interfacing with the nervous system. Among these are optical stimulation, vibrational stimulation, and optogenetics. A newer and perhaps more promising technology is sonogenetics.

Sonogenetics, the use of focused ultrasound to control cells that have been made ultrasound-responsive via gene delivery, is moving from compelling papers to a potential platform strategy. From a neurotech commercialization standpoint, the significance of sonogenetics is less about a single lab trick and more about the emerging convergence of three capabilities: precise genetic targeting, durable and safe delivery, and field-robust ultrasound systems that work the first time outside the origin lab.

One commercial firm that may be exploiting this technology is Merge Labs. The startup recently made a big splash with a $250 million investment from Open AI and Sam Altman. While the company has not yet released its website and the technical personnel behind the company have not been identified, it is rumored to be working with focused ultrasound implants and sonogenetics as gene therapy. If Merge and its peers can validate durable expression, predictable dose–response, and reliable outside-the-lab bring-up, a first wave of indications will likely sit at the intersection of neurology, psychiatry, and rehabilitation, with longer-term spillover into human-machine interaction.

Imaging study shows how brains go off-track in rare childhood disorder

Researchers at the VIB-UAntwerp Center for Molecular Neurology have visualized how brain network development is altered in a model of KCNQ2-related developmental and epileptic encephalopathy, a rare childhood brain disorder. Using longitudinal imaging techniques, the team observed differences in how brain regions communicate and connect, long before behavioral symptoms appear.

KCNQ2-related developmental and epileptic encephalopathy (KCNQ2-DEE) is a rare but severe neurological disorder that affects newborns. Children with this condition typically develop seizures within days after birth and continue to face learning and movement difficulties. The disorder is caused by mutations in a potassium-channel gene that disrupts normal brain activity.

To investigate how this disorder affects , the team of Professor Sarah Weckhuysen visualized and structure throughout early growth in mice carrying the same genetic defect. The study is published in the journal eBioMedicine.

Another protease, pepsin, cuts in the same general region of the antibody molecule as papain but on the carboxy-terminal side of the disulfide bonds (see Fig

3.3). This produces a fragment, the F(ab′)2 fragment, in which the two -binding arms of the antibody molecule remain linked. In this case the remaining part of the is cut into several small fragments. The F(ab′)2 fragment has exactly the same antigen-binding characteristics as the original antibody but is unable to interact with any effector molecule. It is thus of potential value in therapeutic applications of antibodies as well as in research into the functional role of the Fc portion.

Genetic engineering techniques also now permit the construction of many different -related molecules. One important type is a truncated Fab comprising only the of a linked by a stretch of synthetic peptide to a V domain of a . This is called , named from Fragment v ariable. Fv molecules may become valuable therapeutic agents because of their small size, which allows them to penetrate tissues readily. They can be coupled to protein toxins to yield immunotoxins with potential application, for example, in tumor therapy in the case of a Fv specific for a tumor (see Chapter 14).

Homo Invocator

We live immersed in a persistent illusion: the idea that consciousness arises from the brain like the flame from a candle. Contemporary science, constrained by the very instruments it creates, proclaims that the mind is merely the result of electrical impulses and chemical reactions — an epiphenomenon of flesh.

Yet a deeper look — one that doesn’t reject science but rather transcends it — reveals a more radical reality: we, living beings, are not the origin of consciousness, but rather its antenna.

We are hardware. Bodies shaped by millions of years of biological evolution, a complex architecture of atoms and molecules organized into a fractal of systems. But this hardware, no matter how sophisticated, is nothing more than a receptacle, a stage, an antenna. What truly moves, creates, and inspires does not reside here, within this tangible three-dimensional realm; it resides in an unlimited field, a divine matrix where everything already exists. Our mind, far from being an original creator, is a channel, a receiver, an interpreter.

The great question of our time — and perhaps of all human history — is this: how can we update the software running on this biological hardware without the hardware itself becoming obsolete? Herein lies the fundamental paradox: we can dream of enlightenment, wisdom, and transcendence, yet if the body does not keep pace — if the physical circuits cannot support the flow — the connection breaks, the signal distorts, and the promise of spiritual evolution stalls.

The human body, a product of Darwinian evolution’s slow dance, is both marvel and prison. Our eyes capture only a minuscule fraction of the electromagnetic spectrum; our ears are limited to a narrow range of frequencies; our brains filter out and discard 99% of the information surrounding us. Human hardware was optimized for survival — not for truth!

This is the first major limitation: if we are receivers of a greater reality, our apparatus is radically constrained. It’s like trying to capture a cosmic symphony with an old radio that only picks up static. We may glimpse flashes — a sudden intuition, an epiphany, a mystical experience — but the signal is almost always imperfect.

Thus, every spiritual tradition in human history — from shamans to mystery schools, from Buddhism to Christian mysticism — has sought ways to expand or “hack” this hardware: fasting, meditation, chanting, ecstatic dance, entheogens. These are, in fact, attempts to temporarily reconfigure the biological antenna to tune into higher frequencies. Yet we remain limited: the body deteriorates, falls ill, ages, and dies.

If the body is hardware, then the mind — or rather, the set of informational patterns running through it — is software: human software (and a limited one at that). This software isn’t born with us; it’s installed through culture, language, education, and experience. We grow up running inherited programs, archaic operating systems that dictate beliefs, prejudices, and identities.

Beneath this cultural software, however, lies a deeper code: access to an unlimited field of possibilities. This field — call it God, Source, Cosmic Consciousness, the Akashic Records, it doesn’t matter — contains everything: all ideas, all equations, all music, all works of art, all solutions to problems not yet conceived. We don’t invent anything; we merely download it.

Great geniuses throughout history — from Nikola Tesla to Mozart, from Leonardo da Vinci to Fernando Pessoa — have testified to this mystery: ideas “came” from outside, as if whispered by an external intelligence. Human software, then, is the interface between biological hardware and this divine ocean. But here lies the crucial question: what good is access to supreme software if the hardware lacks the capacity to run it?

An old computer might receive the latest operating system, but only if its minimum specifications allow it. Otherwise, it crashes, overheats, or freezes. The same happens to us: we may aspire to elevated states of consciousness, but without a prepared body, the system fails. That’s why so many mystical experiences lead to madness or physical collapse.

Thus, we arrive at the heart of the paradox. If the hardware doesn’t evolve, even the most advanced software download is useless. But if the software isn’t updated, the hardware remains a purposeless machine — a biological robot succumbing to entropy.

Contemporary society reflects this tension. On one hand, biotechnology, nanotechnology, and regenerative medicine promise to expand our hardware: stronger, more resilient, longer-lived bodies. On the other, the cultural software governing us remains archaic: nationalism, tribalism, dogma, consumerism. It’s like installing a spacecraft engine onto an ox-drawn cart.

At the opposite end of the spectrum, we find the spiritual movement, which insists on updating the software — through meditation, energy therapies, expanded states of consciousness — but often neglects the hardware. Weakened, neglected bodies, fed with toxins, become incapable of sustaining the frequency they aim to channel. The result is a fragile, disembodied spirituality — out of sync with matter.

Humanity’s challenge in the 21st century and beyond is not to choose between hardware and software, but to unify them. Living longer is meaningless if the mind remains trapped in limiting programs. Aspiring to enlightenment is futile if the body collapses under the intensity of that light.

It’s essential to emphasize: the power does not reside in us (though, truthfully, it does — if we so choose). This isn’t a doctrine of self-deification, but of radical humility. We are merely antennas. True power lies beyond the physical reality we know, in a plane where everything already exists — a divine, unlimited power from which Life itself emerges.

Our role is simple yet grand: to invoke. We don’t create from nothing; we reveal what already is. We don’t invent; we translate. A work of art, a mathematical formula, an act of compassion — all are downloads from a greater source.

Herein lies the beauty: this field is democratic. It belongs to no religion, no elite, no dogma. It’s available to everyone, always, at any moment. The only difference lies in the hardware’s capacity to receive it and the (human) software that interprets it.

But there are dangers. If the hardware is weak or the software corrupted, the divine signal arrives distorted. This is what we see in false prophets, tyrants, and fanatics: they receive fragments of the field, but their mental filters — laden with fear, ego, and the desire for power — twist the message. Instead of compassion, violence emerges; instead of unity, division; instead of wisdom, dogma.

Therefore, conscious evolution demands both purification of the software (clearing toxic beliefs and hate-based programming) and strengthening of the hardware (healthy bodies, resilient nervous systems). Only then can the divine frequency manifest clearly.

If we embrace this vision, humanity’s future will be neither purely biological nor purely spiritual — it will be the fusion of both. The humans of the future won’t merely be smarter or longer-lived; they’ll be more attuned. A Homo Invocator: the one who consciously invokes the divine field and translates it into matter, culture, science, and art.

The initial paradox remains: hardware without software is useless; software without hardware is impossible. But the resolution isn’t in choosing one over the other — it’s in integration. The future belongs to those who understand that we are antennas of a greater power, receivers of an infinite Source, and who accept the task of refining both body and mind to become pure channels of that reality.

If we succeed, perhaps one day we’ll look back and realize that humanity’s destiny was never to conquer Earth or colonize Mars — but to become a conscious vehicle for the divine within the physical world.

And on that day, we’ll understand that we are neither merely hardware nor merely software. We are the bridge.

Deep down, aren’t we just drifting objects after all?
The question is rhetorical, for I don’t believe any of us humans holds the answer.

__
Copyright © 2025, Henrique Jorge (ETER9)

Image by Gerd Altmann from Pixabay

[ This article was originally published in Portuguese in Link to Leaders at: https://linktoleaders.com/o-ser-como-interface-henrique-jorge-eter9/]

Scientists discover a hidden gene mutation that causes deafness—and a way to fix it

Scientists have identified mutations in the CPD gene as a key cause of a rare congenital hearing loss, revealing how disruptions in arginine and nitric oxide signaling damage sensory cells in the ear. Using mouse and fruit fly models, the team showed that restoring arginine levels or using sildenafil improved cell survival and hearing function.

Chronic traumatic encephalopathy caused by more than just head trauma, study finds

Chronic traumatic encephalopathy (CTE)—most often found in athletes playing contact sports—is known to share similarities with Alzheimer’s disease (AD), namely the buildup of a protein called tau in the brain.

New research published in Science finds even more commonalities between the two at the genetic level, showing CTE (like AD) is linked to damage to the genome and not just caused by repeated head impact (RHI).

The research team, a collaboration between Boston Children’s Hospital, Mass General Brigham, and Boston University, used single-cell genomic sequencing to identify somatic genetic mutations (changes in DNA that occur after conception and are not hereditary).

BRCA2 research reveals a novel mechanism behind chemoresistance

One of the biggest challenges in cancer treatment is chemoresistance: Tumors that initially respond well to chemotherapy become resistant over time. When that happens, treatment options are often limited.

A research team led by Arnab Ray Chaudhuri at the Department of Molecular Genetics, Erasmus MC Cancer Institute has now uncovered a mechanism by which BRCA2-deficient tumors develop this resistance. The proteins BRCA2 and FIGNL1 appear to have a different function than previously assumed.

“These findings change the paradigm of thought,” says Ray Chaudhuri. The team also identified ways to reverse or prevent resistance.

Detailed brain growth atlas in mice offers insights into brain development

Brain growth and maturation doesn’t progress in a linear, stepwise fashion. Instead, it’s a dynamic, choreographed sequence that shifts in response to genetics and external stimuli like sight and sound. This is the first high-resolution growth chart to explain changes of key brain cell types in the developing mouse brain, led by a team at Penn State College of Medicine and the Allen Institute for Brain Science.

Using advanced imaging techniques, the researchers constructed a series of 3D atlases that are like time-lapsed maps of the brain during its first two weeks after birth, offering an unparalleled look at a critical period of brain development. It’s a powerful tool to understand healthy brain development and neurodevelopmental disorders, the researchers explained.

The study, published in Nature Communications, also detailed how regions of the brain change in volume and explained the shift in density of key cell types within them.

Common genetic causes across motor neuron diseases identified

Motor neuron diseases, such as amyotrophic lateral sclerosis (ALS) and hereditary spastic paraplegia (HSP), share physical similarities but have been largely viewed as genetically distinct. However, an analysis led by investigators from St. Jude Children’s Research Hospital and the University of Miami Miller School of Medicine discovered that there are previously unknown ultrarare gene variants (genetic changes found in extremely few individuals) linked to the diseases, and significant overlap of contributing genes between the diseases among patients without family histories of a motor neuron disease.

This new appreciation of the shared genetic origins of different motor neuron diseases is critical to deciphering the origins of these disorders and ultimately developing meaningful therapeutics. The findings are published in Translational Neurodegeneration.

While both ALS and HSP cause progressive motor dysfunction, the two disorders also have distinct characteristics. Weakness in ALS may begin in the arms, legs, head or neck. HSP, by contrast, begins in the legs. The causative, or “canonical” genes for these diseases are also largely distinct.

A revolutionary DNA search engine is speeding up genetic discovery

ETH Zurich scientists have created “MetaGraph,” a revolutionary DNA search engine that functions like Google for genetic data. By compressing global genomic datasets by a factor of 300, it allows researchers to search trillions of DNA and RNA sequences in seconds instead of downloading massive data files. The tool could transform biomedical research and pandemic response.

/* */