Toggle light / dark theme

Establishing a new QM/MM design principle based on electronic-state responses

A research team has proposed a new design principle for QM/MM (quantum mechanics/molecular mechanics) simulations. The approach enables objective and automatic determination of the quantum-mechanical region based on electronic-state changes, addressing a long-standing challenge in multiscale molecular simulations.

The researchers included Professor Hirotoshi Mori (Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University), together with Nichika Ozawa (first-year Ph.D. student at Ochanomizu University) and Assistant Professor Nahoko Kuroki of Ochanomizu University.

The findings are published in the journal Advanced Science as a cover article.

Led Team Discovers Metallic Material With Record Thermal Conductivity

A UCLA-led, multi-institution research team has discovered a metallic material with the highest thermal conductivity measured among metals, challenging long-standing assumptions about the limits of heat transport in metallic materials.

Published this week in Science, the study is led by Yongjie Hu, a professor of mechanical and aerospace engineering at the UCLA Samueli School of Engineering. The team reported that metallic theta-phase tantalum nitride conducts heat nearly three times more efficiently than copper or silver, the best conventional heat-conducting metals.

Thermal conductivity describes how efficiently a material can carry heat. Materials with high thermal conductivity are essential for removing localized hot spots in electronic devices, where overheating limits performance, reliability and energy efficiency. Copper currently dominates the global heat-sink market, accounting for roughly 30% of commercial thermal-management materials, with a thermal conductivity of about 400 watts per meter-kelvin.

Sami Tellatin — Kilimo — Leading The Way To A Water-Positive Future

Leading The Way To A Water-Positive Future — Sami Tellatin — Head of Water & Climate Solutions, [Kilimo](https://www.facebook.com/agrokilimo?__cft__[0]=AZYVjPpsA2hiLM5-TRnxJRoTmkVIP8k9Hro7mpHQd6HkG9roy2B0jBJyWOF7RxuqTpjcE0BjwYcznt__ZsPQBKTYGtf5mRXVr0xUT7RzlbzkSECEuWuYt0aFqjGwwCAKMCXdjJofqt5U9mF08TfSYqYpa8pmedmmVDH3rTrwH4QaMQKi6UK55095pUIWFEwu4DM&__tn__=-]K-R)


Sami Tellatin is Head of Water & Climate Solutions at Kilimo (https://kilimo.com/en/), an organization that connects companies with farmers in the same watershed to implement water-positive practices, generate measurable water savings, and secure resources for both communities and companies.

Kilimo’s operations already span 7 countries, helping steward water resources across more than 500,000 acres of land and partnering with global leaders like Microsoft, Google, Amazon, and major CPGs.

In her role, Sami leads the design and deployment of scalable water-positive solutions that help companies, farmers, and communities address water scarcity through more efficient and sustainable irrigation practices.

Prior to this role, Sami co-founded FarmRaise, an enterprise that unlocks funding for farmers and ranchers seeking to invest in their profitability and sustainability, allowing farmers to learn which public and private funding opportunities they’re eligible for and streamlines the application process, moving the industry toward one common application that unlocks funding to drive conservation practice adoption.

Using lab-grown lung tumors as test subjects for tailored cancer therapies

Lung cancer varies widely from patient to patient, and that diversity makes it hard to find effective treatments. Researchers at the Berlin Institute of Health at Charité (BIH) have developed a method to evaluate multiple therapeutic approaches on patient-derived “tumoroids”—miniature tumors grown from tissue removed during surgery at Charité

By testing drug responses across these tumoroids, the team showed that therapeutic success depends on a complex interplay of tumor characteristics rather than a single factor. Their results suggest that tumoroid-based testing could help physicians tailor treatments to individual patients and improve clinical decision-making.

The BIH researchers have published their findings in Nature Biomedical Engineering.

Off-grid filtration technology can remove over 99% of nanoplastics smaller than 50 nm

Professor Jeong-Min Baik’s research group of the SKKU School of Advanced Materials Science and Engineering has developed a reusable electrokinetic filtration platform capable of filtering more than 99% of ultrafine nanoplastic particles smaller than 50 nm even under commercial-level high-flow conditions.

Plastic pollution, which has surged in recent years through industrialization and the pandemic era, poses a direct threat to human health. In particular, nanoplastics smaller than 100 nm—thousands of times thinner than a human hair—can readily pass through biological membranes in the body and trigger serious diseases such as immune dysregulation and carcinogenicity.

However, conventional water purification systems have struggled to effectively remove nanoplastics of such small sizes, highlighting technological limitations; studies have even reported the presence of hundreds of thousands of particles in a single bottle of bottled water.

Ultra-thin wireless retinal implant offers hope for safely restoring vision signals

An international research team led by Prof. Dr. Sedat Nizamoğlu from the Department of Electrical and Electronics Engineering at Koç University has developed a next-generation, safe, and wireless stimulation technology for retinal degenerative diseases that cause vision loss.

The study is published in Science Advances.

The art of custom-intercalating 42 metals into layered titanates

A research team affiliated with UNIST has reported a novel synthesis strategy that enables the direct intercalation of a wide range of metal cations into the interlayer spaces of layered titanate (LT) structures. This approach opens new possibilities for designing highly tailored catalysts and energy storage materials for specific industrial applications.

Professors Seungho Cho (Department of Materials Science and Engineering), Kwangjin An (School of Energy and Chemical Engineering), and Hu Young Jeong (Graduate School of Semiconductor Materials and Devices Engineering) at UNIST, in collaboration with Professor Jeong Woo Han from Seoul National University, report this advancement in Advanced Materials.

Laser speed in 3D printing tunes atomic structure of high-entropy alloys

Next-generation technology requires next-generation materials that can be tailored to exact mission requirements. Additive manufacturing, or 3D printing, has already revolutionized industries like aerospace engineering by enabling previously unthinkable component designs. However, this technique has been largely limited to pre-existing metallic alloys. This is due to the inherent complexity of the process that leads to far-from-equilibrium microstructures and results in mechanical properties that are hard to predict.

New research on alloy microstructures

In a new study, scientists at Lawrence Livermore National Laboratory and their collaborators demonstrate a method to overcome the challenges of the traditional additive manufacturing process. By adjusting the speed of the laser in a compositionally complex alloy (also called high-entropy alloy), the team discovered a method to guide how the atoms settle as the metal solidifies, controlling the material’s properties directly at the atomic scale.

Newly discovered metallic material with record thermal conductivity upends assumptions about heat transport limits

A UCLA-led, multi-institution research team has discovered a metallic material with the highest thermal conductivity measured among metals, challenging long-standing assumptions about the limits of heat transport in metallic materials.

Published in Science, the study was led by Yongjie Hu, a professor of mechanical and aerospace engineering at the UCLA Samueli School of Engineering. The team reported that metallic theta-phase tantalum nitride conducts heat nearly three times more efficiently than copper or silver, the best conventional heat-conducting metals.

/* */