Toggle light / dark theme

Ultra-low power, fully biodegradable artificial synapse offers record-breaking memory

In Nature Communications, a research team affiliated with UNIST present a fully biodegradable, robust, and energy-efficient artificial synapse that holds great promise for sustainable neuromorphic technologies. Made entirely from eco-friendly materials sourced from nature—such as shells, beans, and plant fibers—this innovation could help address the growing problems of electronic waste and high energy use.

Traditional artificial synapses often struggle with high power consumption and limited lifespan. Led by Professor Hyunhyub Ko from the School of Energy and Chemical Engineering, the team aimed to address these issues by designing a device that mimics the brain’s synapses while being environmentally friendly.

Scientists Solve a Hidden Battery Cracking Mystery That Shortens Lifespan and Raises Fire Risk

A new study shows that promising single-crystal battery materials degrade for reasons scientists hadn’t fully recognized before. Scientists at Argonne National Laboratory and the UChicago Pritzker School of Molecular Engineering (UChicago PME) have identified the source of a long-standing problem

Research reinvents MXene synthesis at a fraction of the cost

MXenes (pronounced like the name “Maxine”) are a class of two-dimensional materials, first identified just 14 years ago, with remarkable potential for energy storage, catalysts, ultrastrong lightweight composites, and a variety of other purposes ranging from electromagnetic shielding to ink that can carry a current.

But manufacturing MXenes has been expensive, difficult and crude.

“MXenes have been made by a very elaborate, multi-step process that involved days of high-temperature work, followed by using dangerous chemicals like hydrofluoric acid and creating a lot of waste,” said Prof. Dmitri Talapin of the University of Chicago Pritzker School of Molecular Engineering (UChicago PME) and Department of Chemistry. “That may have been okay for early-stage research and lab exploration, but became a big roadblock for taking the next step to large-scale applications.”

Archimedean screw inspires new way to encode chirality into magnetic materials

In physics and materials science, the term “spin chirality” refers to an asymmetry in the arrangement of spins (i.e., the intrinsic angular momentum of particles) in magnetic materials. This asymmetry can give rise to unique electronic and magnetic behaviors that are desirable for the development of spintronics, devices that leverage the spin of electrons and electric charge to process or store information.

The creation of materials that exhibit desired spin chirality and associated physical effects on a large scale has so far proved challenging. In a recent paper published in Nature Nanotechnology, researchers at École Polytechnique Fédérale de Lausanne (EPFL), the Max Planck Institute for Chemical Physics of Solids and other institutes introduced a new approach to encode chirality directly into materials by engineering their geometry at a nanoscale.

“Dirk and myself were initially inspired by the elegance of the Archimedean screw and began wondering whether we could build a magnonic analog, something that could ‘pump’ magnons (i.e., collective electron spin excitations) in a similarly directional way,” Dr. Mingran Xu, first author of the paper, told Tech Xplore.

A simple spin swap reveals exotic anyons

Researchers from the University of Innsbruck, the Collège de France, and the Université Libre de Bruxelles have developed a simple yet powerful method to reveal anyons—exotic quantum particles that are neither bosons nor fermions—in one-dimensional systems. Their paper is published in Physical Review Letters.

In conventional three-dimensional space, particles belong to one of two categories: fermions or bosons. In low-dimensional settings, however, quantum mechanics allows for more exotic behavior. Here, anyons can emerge—quasi-particles whose exchange properties continuously interpolate between those of bosons and fermions, leading to fractional statistics. Detecting and engineering such particles in one dimension has long been a central challenge, typically requiring, as theory proposals suggest, intricate scattering schemes or density-dependent tunneling processes.

The new study by teams led by Hanns-Christoph Nägerl at the University of Innsbruck and Nathan Goldman at the Université Libre de Bruxelles and Collège de France (CNRS) now introduces a remarkably simple yet powerful approach. The researchers propose an effective “swap” model that leverages the spin degree of freedom of ultracold atoms. By assigning a complex phase to the exchange—or “swap”—of two spins, the system naturally acquires the fractional statistical behavior characteristic of anyons.

Elegant solution for measuring ultrashort laser pulses discovered

Ultrashort laser pulses—that are shorter than a millionth of a millionth of a second—have transformed fundamental science, engineering and medicine. Despite this, their ultrashort duration has made them elusive and difficult to measure.

About 10 years ago, researchers from Lund University and Porto University introduced a tool for measuring pulse duration of ultrafast lasers. The same team has now achieved a breakthrough that enables the measurement of individual laser pulses across a wider parameter range in a more compact setup.

“The current standard measurements for femtosecond lasers, typically used in industry and medicine, give just an estimate of the pulse duration. Our approach gives a more complete measurement and can contribute to unleashing the whole potential of ultrafast laser technology,” says Daniel Díaz Rivas, doctoral student in Atomic Physics at Lund University.

Shortest light pulse ever created captures ultrafast electron dynamics

Electrons determine everything: how chemical reactions unfold, how materials conduct electricity, how biological molecules transfer energy, and how quantum technologies operate. But electron dynamics happens on attosecond timescales—far too fast for conventional measurement tools.

Researchers have now generated a 19.2-attosecond soft X-ray pulse, which effectively creates a camera capable of capturing these elusive dynamics in real time with unprecedented detail, enabling the observation of processes never observed before. Dr. Fernando Ardana-Lamas, Dr. Seth L. Cousin, Juliette Lignieres, and ICREA Prof. Jens Biegert, at ICFO, has published this new record in Ultrafast Science. At just 19.2 attoseconds long, it is the shortest and brightest soft X-ray pulse ever produced, giving rise to the fastest “camera” in existence.

Flashes of light in the soft X-ray spectral range provide fingerprinting identification, allowing scientists to track how electrons reorganize around specific atoms during reactions or phase transitions. Generating an isolated pulse this short, required innovations in high-harmonic generation, advanced laser engineering, and attosecond metrology. Together, these developments allow researchers to observe electron dynamics, which define material properties, at their natural timescales.

Vital intertwining: Blood parasite’s chainmail-like DNA structure could inspire next-generation materials

As tough as medieval chainmail armor and as soft as a contact lens. This material is not taken from science fiction, it is a natural structure made of thousands of DNA circles interlinked with each other. Studying it can help us advance our knowledge in many fields, from biophysics and infectious diseases to materials science and biomedical engineering.

This topic is the subject of “Organisation and dynamics of individual DNA segments in topologically complex genomes,” an article that has been published in Nucleic Acid Research.

The study, which also appeared on the front cover of the journal, is the result of a collaboration between the Department of Physics of the University of Trento, with Guglielmo Grillo under the supervision of Luca Tubiana, and the Department of Physics and Astronomy of the University of Edinburgh, with Saminathan Ramakrishnan and Auro Varat Patnaik, supervised by Davide Michieletto.

Converting Spin Waves to Vibrational Waves

The demonstration of wave conversion may lead to spintronic technology that transmits fragile spin data as acoustic waves.

A branch of electronic device engineering called spintronics uses electron spins to store and transmit information. A research team has now opened up new possibilities for information processing with spins by showing how spin signals can be translated into acoustic signals (phonons) that can be transmitted through materials [1]. Phonons can travel undisturbed for longer distances, so this conversion might extend the capabilities of spintronics, much as the conversion of electrical pulses into light is used for long-distance telecommunication.

In a spin current, electrons that are preferentially aligned in one spin state can be thought of as remaining stationary while a wave of spin reorientation passes through the material. Spin currents are already used in devices such as specialized magnetic memories and other computing elements, in which information is encoded and transferred using the spins.

Climate whiplash by 2064: Study projects extreme swings in rainfall and drought for Asia

A climate study led by The Hong Kong University of Science and Technology (HKUST), in collaboration with an international research team, reveals that under a high-emission scenario, the Northern Hemisphere summer monsoons region will undergo extreme weather events starting in 2064. Asia and broader tropical regions will face frequent “subseasonal whiplash” events, characterized by extreme downpours and dry spells alternating every 30 to 90 days which trigger climate disruptions with catastrophic impacts on food production, water management, and clean energy systems.

Published in Science Advances under the title “Increased Global Subseasonal Whiplash by Future BSISO Behavior,” the research was co-led by Prof. Lu Mengqian, Director of the Otto Poon Center for Climate Resilience and Sustainability and Associate Professor of the Department of Civil and Environmental at HKUST and Dr. Cheng Tat-Fan, a postdoctoral fellow in the Department of Civil and Environmental Engineering at HKUST, alongside collaborators from the University of Hawaiʻi at Mānoa, Sun Yat-Sen University and Nanjing University of Information Science and Technology.

/* */