Toggle light / dark theme

Johns Hopkins scientists grow novel ‘whole-brain’ organoid

Johns Hopkins University researchers have grown a novel whole-brain organoid, complete with neural tissues and rudimentary blood vessels—an advance that could usher in a new era of research into neuropsychiatric disorders such as autism.

“We’ve made the next generation of brain organoids,” said lead author Annie Kathuria, an assistant professor in JHU’s Department of Biomedical Engineering who studies brain development and neuropsychiatric disorders. “Most brain organoids that you see in papers are one brain region, like the cortex or the hindbrain or midbrain. We’ve grown a rudimentary whole-brain organoid; we call it the multi-region brain organoid (MRBO).”

Could Metasurfaces Be The Next Quantum Information Processors?

In the race toward practical quantum computers and networks, photons — fundamental particles of light — hold intriguing possibilities as fast carriers of information at room temperature. Photons are typically controlled and coaxed into quantum states via waveguides on extended microchips, or through bulky devices built from lenses, mirrors, and beam splitters. The photons become entangled – enabling them to encode and process quantum information in parallel – through complex networks of these optical components. But such systems are notoriously difficult to scale up due to the large numbers and imperfections of parts required to do any meaningful computation or networking.

Could all those optical components could be collapsed into a single, flat, ultra-thin array of subwavelength elements that control light in the exact same way, but with far fewer fabricated parts?

Optics researchers in the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) did just that. The research team led by Federico Capasso, the Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering, created specially designed metasurfaces — flat devices etched with nanoscale light-manipulating patterns — to act as ultra-thin upgrades for quantum-optical chips and setups.


Researchers blend theoretical insight and precision experiments to entangle photons on an ultra-thin chip.

Ionic-electronic photodetector brings in-sensor vision closer to reality

In an advance at the intersection of neuromorphic engineering and photonics, researchers have developed an ionic-electronic photodetector that not only detects light but also performs in-sensor image processing, offering the potential to surpass some limitations of human vision—including color vision deficiencies.

Optimized cycle system recovers waste heat from fusion reactor

A research team led by Prof. Guo Bin from the Hefei Institutes of Physical Science of the Chinese Academy of Sciences has designed and optimized an organic Rankine cycle (ORC) system specifically for recovering low-grade waste heat from the steady-state Chinese Fusion Engineering Testing Reactor (CFETR) based on organic fluid R245fa, achieving enhanced thermal efficiency and reduced heat loss.

CFETR, a steady-state magnetic reactor, is a crucial step toward realizing commercial fusion energy. However, managing the large amount of low-grade waste heat produced by components such as the divertor and blanket remains a key challenge.

To solve the thermodynamic and heat integration issues, the researchers developed advanced simulation models using Engineering Equation Solver for cycle analysis and MATLAB-based LAMP modeling for dynamic system configuration. These tools enabled a comprehensive investigation and optimization of the ORC configuration, leading to significantly improved thermal performance.

New Plague Linux malware stealthily maintains SSH access

A newly discovered Linux malware, which has evaded detection for over a year, allows attackers to gain persistent SSH access and bypass authentication on compromised systems.

Nextron Systems security researchers, who identified the malware and dubbed it “Plague,” describe it as a malicious Pluggable Authentication Module (PAM) that uses layered obfuscation techniques and environment tampering to avoid detection by traditional security tools.

This malware features anti-debugging capabilities to thwart analysis and reverse engineering attempts, string obfuscation to make detection more difficult, hardcoded passwords for covert access, as well as the ability to hide session artifacts that would normally reveal the attacker’s activity on infected devices.

Galaxy Scale Megastructures & Kardashev 3 Civilizations

Imagine engineering projects so vast they mold galaxies into new shapes. We’ll explore the staggering feats of Kardashev-3 and beyond civilizations, crafting CARD galaxies, Birch Planets, and even rearranging superclusters.

Watch my exclusive video Dark Biospheres: https://nebula.tv/videos/isaacarthur–
Get Nebula using my link for 40% off an annual subscription: https://go.nebula.tv/isaacarthur.
Get a Lifetime Membership to Nebula for only $300: https://go.nebula.tv/lifetime?ref=isa
Use the link https://gift.nebula.tv/isaacarthur to give a year of Nebula to a friend for just $36.

Visit our Website: http://www.isaacarthur.net.
Join Nebula: https://go.nebula.tv/isaacarthur.
Support us on Patreon: / isaacarthur.
Support us on Subscribestar: https://www.subscribestar.com/isaac-a
Facebook Group: / 1583992725237264
Reddit: / isaacarthur.
Twitter: / isaac_a_arthur on Twitter and RT our future content.
SFIA Discord Server: / discord.
Credits:
Spaceport Innovations — Designing the Next Generation of Launch Sites.
August 3, 2025; Episode 746
Written, Produced & Narrated by: Isaac Arthur.
Galaxy-Scale Megastructures & Kardashev-3 Civilizations.
Written by: Isaac Arthur.
Editor: Darius Said.
Graphics: Jeremy Jozwik, Ken York, Sergio Botero, Steve Bowers.
Select imagery/video supplied by Getty Images.
Music Courtesy of Epidemic Sound http://epidemicsound.com/creator.
Stellardrone, \

New cooling technology raises power and longevity of solar cells

A team of international researchers led by King Abdullah University of Science and Technology (KAUST) and including researchers from King Abdulaziz City for Science and Technology (KACST) has developed a new composite material that enhances the performance of solar cells. Solar cells with the material functioning for weeks in the Saudi Arabia desert showed higher power output and a longer operation time than solar cells without. Additionally, the material is cheap to fabricate and reduces the cost of maintaining solar cells. The study can be read in Materials Science and Engineering.


Composite material keeps solar cells cool using air moisture and no electricity to extend solar cell lifetime more than 200%.

Carl David Anderson

Carl David Anderson was born in New York City, the son of Swedish immigrants. He studied physics and engineering at Caltech (B.S., 1927; Ph. D., 1930). Under the supervision of Robert Millikan, He began investigations into cosmic rays during the course of which he encountered unexpected particle tracks in his (modern versions now commonly referred to as an Anderson) cloud chamber photographs that he correctly interpreted as having been created by a particle with the same mass as the electron, but with opposite electrical charge. This discovery, announced in 1932 and later confirmed by others, validated Paul Dirac’s theoretical prediction of the existence of the positron. Anderson first detected the particles in cosmic rays. He then produced more conclusive proof by shooting gamma rays produced by the natural radioactive nuclide ThC’’ (208 Tl) [ 2 ] into other materials, resulting in the creation of positron-electron pairs. For this work, Anderson shared the 1936 Nobel Prize in Physics with Victor Hess. [ 3 ] Fifty years later, Anderson acknowledged that his discovery was inspired by the work of his Caltech classmate Chung-Yao Chao, whose research formed the foundation from which much of Anderson’s work developed but was not credited at the time. [ 4 ]

Also in 1936, Anderson and his first graduate student, Seth Neddermeyer, discovered a muon (or ‘mu-meson’, as it was known for many years), a subatomic particle 207 times more massive than the electron, but with the same negative electric charge and spin 1/2 as the electron, again in cosmic rays. Anderson and Neddermeyer at first believed that they had seen a pion, a particle which Hideki Yukawa had postulated in his theory of the strong interaction. When it became clear that what Anderson had seen was not the pion, the physicist I. I. Rabi, puzzled as to how the unexpected discovery could fit into any logical scheme of particle physics, quizzically asked “Who ordered that?” (sometimes the story goes that he was dining with colleagues at a Chinese restaurant at the time). The muon was the first of a long list of subatomic particles whose discovery initially baffled theoreticians who could not make the confusing “zoo” fit into some tidy conceptual scheme.

Additive Manufacturing Enables Advanced Thermal Control Systems for Next-Generation Space Missions

3D Systems is collaborating with researchers from Penn State University and Arizona State University on two projects sponsored by NASA intended to enable groundbreaking alternatives to current thermal management solutions.

Severe temperature fluctuations in space can damage sensitive spacecraft components, resulting in mission failure. By combining deep applications expertise with 3D Systems’ leading additive manufacturing solutions comprising Direct Metal Printing (DMP) technology and tailored materials and Oqton’s 3DXpert® software, the teams are engineering sophisticated thermal management solutions for the demands of next-generation satellites and space exploration.

The project led by researchers with Penn State University, Arizona State University, and the NASA Glenn Research Center in collaboration with 3D Systems’ Application Innovation Group (AIG) has resulted in processes to build embedded high-temperature passive heat pipes in heat rejection radiators that are additively manufactured in titanium. These heat pipe radiators are 50 percent lighter per area with increased operating temperatures compared with current state-of-the-art radiators, allowing them to radiate heat more efficiently for high-power systems.


By combining deep applications expertise with 3D Systems’ leading additive manufacturing solutions, research teams are engineering sophisticated thermal management solutions for the demands of next-generation satellites and space exploration.

Columbia scientists turn yogurt into a healing gel that mimics human tissue

Scientists at Columbia Engineering have developed an injectable hydrogel made from yogurt-derived extracellular vesicles (EVs) that could revolutionize regenerative medicine. These EVs serve both as healing agents and as structural components, eliminating the need for added chemicals. The innovation leverages everyday dairy products like yogurt to create a biocompatible material that mimics natural tissue and enhances healing.

/* */