Toggle light / dark theme

A research team has identified a previously unknown degradation mechanism that occurs during the use of lithium-ion batteries. Their findings are published in Advanced Energy Materials.

The team includes researcher Seungyun Jeon and Dr. Gukhyun Lim, led by Professor Jihyun Hong from the Department of Battery Engineering at POSTECH (Pohang University of Science and Technology), in collaboration with Professor Jongsoon Kim’s group at Sungkyunkwan University.

Lithium-ion batteries, which are essential for , typically use nickel-manganese-cobalt (NMC) ternary cathodes. To reduce costs, recent industry trends have favored increasing the nickel content while minimizing the use of expensive cobalt. However, higher nickel content tends to shorten the overall cycle life of the battery.

I stormed a castle in Burbank that is home to the Terraformer — a machine that uses air, water, and sunlight to produce all the fuel we’d ever need. It’s cheap and can be run in almost any condition, anywhere in the world. The only problem? It’s wildly inefficient – but for the first time in history, solar power is so cheap that it no longer matters.

Plus, we get to see the misuse of a cake mixer to further the cause of science! Leave a comment to let us know if this is your favorite misuse of a cake mixer.

Timestamps:
0:00 — Welcome to Hard Reset.
1:16 — Meet Casey Handmer.
3:06 — A cheaper kind of fuel.
6:13 — Casey’s plan.
7:08 — The terraformer.
8:27 — The carbon capture system.
10:50 — The power of methane.
12:16 — An inefficient process.
13:50 — Terraform Industries’ next step.

A major breakthrough in liquid catalysis is transforming how essential products are made, making the chemical manufacturing process faster, safer and more sustainable than ever before.

Researchers from Monash University, the University of Sydney, and RMIT University have developed a liquid that could transform chemical production across a range of industries—from pharmaceuticals and sustainable products to advanced materials.

By dissolving palladium in liquid gallium the team, led by Associate Professor Md. Arifur Rahim from Monash University’s Department of Chemical and Biological Engineering, created a self-regenerating catalytic system with unprecedented efficiency.

Chibueze Amanchukwu wants to fix batteries that haven’t been built yet. Demand for batteries is on the rise for EVs and the grid-level energy storage needed to transition Earth off fossil fuels. But more batteries will mean more of a dangerous suite of materials used to build them: PFAS, also known as “forever chemicals.”

“To address our needs as a society for electric vehicles and energy storage, we are coming up with more ,” said Amanchukwu, Neubauer Family Assistant Professor of Molecular Engineering in the UChicago Pritzker School of Molecular Engineering (UChicago PME). “You can see the dilemma.”

PFAS are a family of thousands of chemicals found in batteries but also everything from fast food wrappers and shampoo to firefighting foam and yoga pants. They keep scrambled eggs from sticking to pans and rain from soaking into jackets and paint, but the same water resistance that makes them useful also make them difficult to remove when they get into the water supply. This earned them the nickname “forever chemicals.”

A quantum state of light was successfully teleported through more than 30 kilometers (around 18 miles) of fiber optic cable amid a torrent of internet traffic – a feat of engineering once considered impossible.

The impressive demonstration by researchers in the US in 2024 may not help you beam to work to beat the morning traffic, or download your favourite cat videos faster.

However, the ability to teleport quantum states through existing infrastructure represents a monumental step towards achieving a quantum-connected computing network, enhanced encryption, or powerful new methods of sensing.

The Great Pyramid of Giza has mystified historians, archaeologists, and engineers for centuries. From its precision alignment with astronomical bodies to its geometric perfection, every aspect seems meticulously engineered for purposes beyond mere burial or symbolic display. But what if the purpose was far more profound — and fundamentally quantum?

What is Control? here is a nice definition according to Wikipedia — Control engineering or control systems engineering is an engineering discipline that deals with control systems, applying control theory to design equipment and systems with desired behaviors in control environments. The discipline of controls overlaps and is usually taught along with electrical engineering and mechanical engineering at many institutions around the world. The practice uses sensors and detectors to measure the output performance of the process being controlled; these measurements are used to provide corrective feedback helping to achieve the desired performance. Systems designed to perform without requiring human input are called automatic control systems (such as cruise control for regulating the speed of a car).

The large-scale renewable energy storage sphere is set to get a massive boost with the development of a 1 GWh molten salt storage system, which will be capable of powering approximately 100,000 homes for 10 hours with an efficiency of up to 90%.

This breakthrough is the result of a collaboration between Danish thermal energy storage developer Hyme Energy and Swiss fluid engineering specialist Sulzer.

Researchers from the U.S. Army Research Laboratory (ARL) and Lehigh University have developed a nanostructured copper alloy that could redefine high-temperature materials for aerospace, defense, and industrial applications.

Their findings, published in the journal Science, introduce a Cu-Ta-Li (copper-tantalum-lithium) alloy with exceptional thermal stability and , making it one of the most resilient copper-based materials ever created.

“This is cutting-edge science, developing a new material that uniquely combines copper’s excellent conductivity with strength and durability on the scale of nickel-based superalloys,” said Martin Harmer, the Alcoa Foundation Professor Emeritus of Materials Science and Engineering at Lehigh University and a co-author of the study. “It provides industry and the military with the foundation to create new materials for hypersonics and high-performance turbine engines.”