Toggle light / dark theme

Dr. Theofanopoulou studies neural circuits behind sensory-motor behaviors like speech and dance, aiming to develop drug-and arts-based therapies for brain disorders. Her brain imaging research reveals overlapping motor cortex regions controlling muscles for speech and dance, while transcriptomic studies show upregulation of the oxytocin gene pathway in key areas like the motor cortex and brainstem. Using zebra finches, Bengalese finches, white-rumped munias, and humans, she demonstrates oxytocin’s role in vocal production. She also developed genomic tools to apply these findings across vertebrates. Her future work explores oxytocin-based drugs and dance therapies to treat speech and motor deficits in brain disorders. Recorded on 02/14/2025. [3/2025] [Show ID: 40384]

Donate to UCTV to support informative & inspiring programming:
https://www.uctv.tv/donate.

Learn more about anthropogeny on CARTA’s website:
https://carta.anthropogeny.org/

More videos from: CARTA: The Origin of Love.

A brain’s 86 billion neurons are always chattering along with tiny electrical and chemical signals. But how can we get inside the brain to study the fine details? Can we eavesdrop on cells using other cells? What is the future of communication between brains? Join Eagleman with special guest Max Hodak, founder of Science Corp, a company pioneering stunning new methods in brain computer interfaces.

Smart bullets are real—and they might already be in use. From DARPA’s EXACTO to Russia’s secretive programs, guided bullets have come a long way since The Fifth Element. Here’s what we know.

Got a beard? Good. I’ve got something for you: http://beardblaze.com.

Simon’s Social Media:
Twitter: / simonwhistler.
Instagram: / simonwhistler.

Love content? Check out Simon’s other YouTube Channels:

Working in the field of genetics is a bizarre experience. No one seems to be interested in the most interesting applications of their research.

We’ve spent the better part of the last two decades unravelling exactly how the human genome works and which specific letter changes in our DNA affect things like diabetes risk or college graduation rates. Our knowledge has advanced to the point where, if we had a safe and reliable means of modifying genes in embryos, we could literally create superbabies. Children that would live multiple decades longer than their non-engineered peers, have the raw intellectual horsepower to do Nobel prize worthy scientific research, and very rarely suffer from depression or other mental health disorders.

The scientific establishment, however, seems to not have gotten the memo. If you suggest we engineer the genes of future generations to make their lives better, they will often make some frightened noises, mention “ethical issues” without ever clarifying what they mean, or abruptly change the subject. It’s as if humanity invented electricity and decided the only interesting thing to do with it was make washing machines.

Pancreatic cancer is closely linked to the nervous system, according to researchers from the German Cancer Research Center (DKFZ) and the Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM). Their recent study, published in Nature, reveals that pancreatic tumors actively reprogram neurons to support their growth.

This episode is all about brain organoids. Cerebral organoids or brain organoids were developed in 2013 by Madeline Lancaster and Jürgen Knoblich. Brain organoids are also called mini-brains and they are a powerful tool to grow brain-like structures in petri dishes. Brain organoids enable studies on the development of brains, brain diseases or brain infections. In this video, we will talk how we can make brain organoids and how we use brain organoids.

🔬 Subscribe for more awesome biomedical research: https://bit.ly/2SRMqhC

🔬 Ready for awesome scientific discussion?! Join us on Discord: / discord.

0:00 — Introduction to Brain Organoids.

Huntington’s disease is a neurodegenerative disorder that is usually fatal about 15 to 20 years after a patient is diagnosed. It is known to be caused by an aberrant repetitive sequence (CAG) in the huntingtin gene. Unaffected people carry fewer than 35 of these CAG repeats, while Huntington’s patients have more than 40 CAG repeats, which get longer, or expand over their lifetime. Scientists have now revealed that a specific subset of genes related to the repair of mismatched DNA, may have a key role in Huntington’s disease. The neurons that are impaired in Huntington’s are particularly susceptible to this mismatch damage that is not fixed. The findings have been reported in Cell.

In this work, the researchers used a mouse model of Huntington’s disease to study the impact of several genes on the disorder, including six genes related to DNA mismatch repair. In mice that were engineered to lack the mismatch repair genes Msh3 and Pms1, many of the symptoms of Huntington’s that these mice mimic were rescued. Some of the molecular and cellular pathology of Huntingon’s disease (HD) was no longer observed in the brains of these animals, and there were improvements in gait and movement.

ETH Zurich researchers have investigated how tiny gas bubbles can deliver drugs into cells in a targeted manner using ultrasound. For the first time, they have visualized how tiny cyclic microjets liquid jets generated by microbubbles penetrate the cell membrane, enabling the drug uptake.

The targeted treatment of brain diseases such as Alzheimer’s, Parkinson’s or brain tumors is challenging because the brain is a particularly sensitive organ that is well protected. That’s why researchers are working on ways of delivering drugs to the brain precisely, via the bloodstream. The aim is to overcome the blood–brain barrier, which normally only allows certain nutrients and oxygen to pass through.

Microbubbles that react to ultrasound are a particularly promising method for this sort of therapy. These microbubbles are smaller than a , are filled with gas and have a special coating of fat molecules to stabilize them. They are injected into the bloodstream together with the drug and then activated at the target site using ultrasound. The movement of the microbubbles creates tiny pores in the cell membrane of the blood vessel wall that the drug can then pass through.