Toggle light / dark theme

World’s smallest capacitor paves way for next-generation quantum metrology

Nanomechanical systems developed at TU Wien have now reached a level of precision and miniaturization that will allow them to be used in ultra-high-resolution atomic force microscopes in the future. Their new findings are published in the journal Advanced Materials Technologies.

A major leap in measurement technology begins with a tiny gap of just 32 nanometers. This is the distance between a movable aluminum membrane and a fixed electrode, together forming an extremely compact parallel-plate capacitor—a new world record. This structure is intended for use in highly precise sensors, such as those required for atomic force microscopy.

But this world record is more than just an impressive feat of miniaturization—it is part of a broader strategy. TU Wien is developing various hardware platforms to make quantum sensing easier to use, more robust, and more versatile. In conventional optomechanical experiments, the motion of tiny mechanical structures is read out using light. However, optical setups are delicate, complex, and difficult to integrate into compact, portable systems. TU Wien therefore relies on other types of oscillations that are better suited for compact sensors.

This Quantum Breakthrough Could Change How Materials Are Made

Scientists have shown that it may be possible to transform materials simply by triggering internal quantum ripples rather than blasting them with intense light. Imagine being able to change what a material is capable of simply by shining light on it. That idea may sound like something out of s

Soft robotic hand ‘sees’ around corners to achieve human-like touch

To reliably complete household chores, assemble products and tackle other manual tasks, robots should be able to adapt their manipulation strategies based on the objects they are working with, similarly to how humans leverage information they gain via the sense of touch. While humans attain tactile information via nerves in their skin and muscles, robots rely on sensors, devices that sense their surroundings and pick up specific physical signals.

Most robotic hands and grippers developed so far rely on visual-tactile sensors, systems that use small cameras to capture images, while also picking up surface deformations resulting from contact with specific objects.

A key limitation of these sensors is that they need to be made of stiff materials, to ensure that the cameras capture high-quality images. This reduces the overall flexibility of robots that rely on the sensors, making it harder for them to handle fragile and unevenly shaped objects.

Light-activated tissue adhesive patch offers rapid, watertight neurosurgical sealing

Durotomy is a common neurosurgical complication involving a tear in the dura mater, the protective membrane surrounding the brain and spinal cord. Damage can cause cerebrospinal fluid (CSF) leakage, leading to delayed healing, headaches, and infection, making a reliable watertight dural closure essential.

Tissue adhesives are increasingly being explored as alternatives to suturing for dural closure because they offer simpler and faster application. However, many existing glue-based sealants suffer from excessive swelling, leading to mass effect and unwanted tissue adhesion, which can lead to postoperative complications.

To address these limitations, researchers have investigated Janus tissue patches, which feature two distinct surfaces—one that adheres strongly to tissue and another that prevents unwanted adhesion. Unfortunately, most existing Janus patches rely on multiple materials and complex, multi-step fabrication processes, limiting their practical use.

Modern Calculations Finally Solve 50-Year-Old Magnetic Mystery in Steel

Researchers at the Department of Materials Science and Engineering within The Grainger College of Engineering have identified the first detailed physical mechanism explaining how magnetic fields slow the movement of carbon atoms inside iron. The study, published in Physical Review Letters, sheds new light on the role carbon plays in shaping the internal grain structure of steel.

Steel, which is made from iron and carbon, is among the most widely used construction materials worldwide. Producing steel with specific internal structures typically requires extreme heat, making the process highly energy intensive.

Decades ago, researchers observed that exposing certain steels to magnetic fields during heat treatment led to improved performance, but the explanations offered at the time remained largely theoretical. Pinpointing the underlying cause of this effect could give engineers more precise control over heat treatment, leading to more efficient processing and lower energy demands.

Tuning spin waves—using commercially available devices at room temperature

Physicist Davide Bossini from the University of Konstanz has recently demonstrated how to change the frequency of the collective magnetic oscillations of a material by up to 40%—using commercially available devices at room temperature.

“We now have a full picture,” Bossini says. For years, the physicist from the University of Konstanz has studied how to use light to control the collective magnetic oscillations of a material—known as magnons. In the summer of 2025, he was finally able to show how to change the “magnetic DNA” of a material via the interaction between light and magnons.

He now demonstrates how the frequency of oscillations can be controlled quasi instantly and on demand by means of a weak magnetic field and intense laser pulses. In this way, he can increase or decrease frequencies by up to 40%. The effect is due to the interaction of the optical excitation, magnetic anisotropy (directional dependence) and the external magnetic field.

Stanford Researchers Develop New Material That Changes Color and Texture Like an Octopus

Inspired by the remarkable camouflage abilities of octopus and cuttlefish, Stanford researchers have developed a soft material that can rapidly shift its surface texture and color at extremely fine scales. Octopus and cuttlefish are masters of disguise. Many species can quickly shift both the col

Scientists demonstrate low-cost, high-quality lenses for super-resolution microscopy

Researchers have shown that consumer-grade 3D printers and low-cost materials can be used to produce multi-element optical components that enable super-resolution imaging, with each lens costing less than $1 to produce. The new fabrication approach is poised to broaden access to fully customizable optical parts and could enable completely new types of imaging tools.

“We created optical parts that enable imaging of life’s smallest building blocks at a remarkable level of detail,” said lead author Jay Christopher from the University of Strathclyde in the UK. “This approach opens the possibility for customized imaging systems and unlocks imaging scenarios that are traditionally either impossible or need costly glass manufacturing services.”

In the journal Biomedical Optics Express, the researchers describe their lens design and manufacturing processes, which combine 3D printing, silicone molding and a UV curable clear resin. They used lenslets fabricated with their technique to create a multifocal structured illumination microscope that imaged microtubules in a cell’s cytoskeleton with a resolution of around 150 nm.

Ultra-small, high-performance electronics grown directly on 2D semiconductors

In recent years, electronics engineers have been trying to identify semiconducting materials that could substitute for silicon and enable the further advancement of electronic devices. Two-dimensional (2D) semiconductors, such as molybdenum disulfide (MoS₂), have proved to be among the most promising solutions, as their thinness and resistance to short-channel effects could yield highly performing and smaller electronics.

To create transistors and other electronic components based on 2D materials, however, engineers need to be able to attach electrical connections to them and reliably form ohmic contacts, which allow electrical current to flow freely through the resulting devices. As devices get smaller, however, they also require smaller contacts that have proved to be very difficult to attach to 2D semiconductors.

Researchers at Nanjing University and other institutes in China recently introduced a new strategy to reliably grow ultra-short and low-resistance semimetallic antimony crystal contacts directly on MoS₂

/* */