Toggle light / dark theme

Analog hardware may solve Internet of Things’ speed bumps and bottlenecks

The ubiquity of smart devices—not just phones and watches, but lights, refrigerators, doorbells and more, all constantly recording and transmitting data—is creating massive volumes of digital information that drain energy and slow data transmission speeds. With the rising use of artificial intelligence in industries ranging from health care and finance to transportation and manufacturing, addressing the issue is becoming more pressing.

A research team led by the University of Massachusetts Amherst aims to address the problem with new technology that uses old-school analog computing: an electrical component known as a memristor.

“Certainly, our society is more and more connected, and the number of those devices is increasing exponentially,” says Qiangfei Xia, the Dev and Linda Gupta professor in the Riccio College of Engineering at UMass Amherst. “If everyone is collecting and processing data the old way, the amount of data is going to be exploding. We cannot handle that anymore.”

B cells play a more sinister role than believed in progression of type 1 diabetes

A recent study by Vanderbilt Health researchers has revealed a greater, detrimental role for B lymphocytes (B cells) in the progression of type 1 diabetes (T1D).

B cells are immune cells thought to drive the immune system’s attack on insulin-producing beta cells by activating anti-islet T cells. The study published in Diabetes suggests they play an even more sinister role by also interfering with and limiting the function of regulatory T cells (Tregs) that help calm the immune system.

“Our study showed B cells can weaken the body’s natural defenses by interfering with Tregs, which normally behave as peacekeepers to ward off immune attacks on the pancreas and the insulin-producing beta cells,” said Daniel Moore, MD, PhD, associate professor of Pediatrics at Vanderbilt Health and the study’s corresponding author.

Two harmful gene variants can restore function when combined, study reveals

Sometimes, in genetics, two wrongs do make a right. A research team has recently shown that two harmful genetic variants, when occurring together in a gene, can restore function—proving a decades-old hypothesis originally proposed by Nobel laureate Francis Crick.

Their study, to be published in the Proceedings of the National Academy of Sciences, not only experimentally validated this theory but also introduced a powerful artificial intelligence (AI)-driven approach to genetic interpretation led by George Mason University researchers.

The project began when Aimée Dudley, a geneticist at the Pacific Northwest Research Institute (PNRI), approached George Mason University Chief AI Officer Amarda Shehu after following her lab’s work on frontier AI models for predicting the functional impact of genetic variation. That conversation sparked a collaboration that married PNRI’s experimental expertise with George Mason’s computational innovation to discover some surprising ways variant combinations can shape human health.

Human heart regrows muscle cells after heart attack, researchers discover

Pioneering research by experts at the University of Sydney, the Baird Institute and the Royal Prince Alfred Hospital in Sydney has shown that heart muscle cells regrow after a heart attack, opening up the possibility of new regenerative treatments for cardiovascular disease.

Following the publication of the study in Circulation Research, first author Dr. Robert Hume, from the Faculty of Medicine and Health and Charles Perkins Center, and Lead of Translational Research at the Baird Institute for Applied Heart and Lung Research, explained the significance of the finding: Until now we’ve thought that, because heart cells die after a heart attack, those areas of the heart were irreparably damaged, leaving the heart less able to pump blood to the body’s organs.

Our research shows that while the heart is left scarred after a heart attack, it produces new muscle cells, which opens up new possibilities.

AI model detects prediabetes using ECG data without need for blood tests

DiaCardia, a novel artificial intelligence model that can accurately identify individuals with prediabetes using either 12-lead or single-lead electrocardiogram (ECG) data, has been developed. This breakthrough holds promise for future home-based prediabetes screening using consumer wearable devices, without requiring invasive blood tests.

Type 2 diabetes occurs when the human body either cannot make enough insulin or does not use insulin well, resulting in high blood glucose levels. This condition is a growing global health burden that can reduce the quality of life and life expectancy.

Before type 2 diabetes develops, many people go through a prolonged stage called prediabetes, where blood glucose levels are above normal but not high enough to be diagnosed as diabetes. Prediabetes is an important window wherein lifestyle changes can reduce the progression to diabetes.

The world’s first room-temperature continuous-wave UV-B laser diode on a sapphire substrate

Ultraviolet-B (UV-B) semiconductor lasers are highly sought for medical, biotechnology, and precision manufacturing applications; however, previous UV-B laser diodes were limited to pulsed operation or required cryogenic cooling, making continuous room-temperature operation unattainable.

Researchers in Japan report the world’s first continuous-wave UV-B semiconductor laser diode operating at room temperature on a low-cost sapphire substrate.

This breakthrough advances compact, energy-efficient UV light sources, potentially replacing bulky gas-based lasers in health care, industrial, and scientific research applications worldwide.

Short, intensive workouts can help fight bowel cancer

As many of us embark on an exercise or gym routine for the new year, research reveals that just 10 minutes of intense exercise could help fight cancer.

Short bursts of energetic activity can trigger rapid molecular changes in the bloodstream, shutting down bowel cancer growth and speeding up DNA damage repair, a new study has shown.

Researchers at Newcastle University have found that exercise increases the concentration of several small molecules in the blood—many linked to reducing inflammation, improving blood vessel function, and metabolism.

Inflammation fuels one of the most aggressive forms of cancer

Unlike other epithelial cancers, small cell lung cancer (SCLC) shares features with neuronal cells, including lack of caspase-8 expression, a protein involved in programmed, non-inflammatory cell-death (apoptosis), a mechanism that is essential to eliminate faulty or mutated cells and to maintain health.

To better mimic the features of human SCLC, the team generated and characterized a novel genetically engineered mouse model lacking caspase-8. Using this new model, the team observed that when this protein is missing, an unusual chain reaction sets off.

“The absence of caspase-8 leads to a type of inflammatory cell death called necroptosis that creates a hostile, inflamed environment even before tumors fully form” explains the senior author. “We were also intrigued to find that pre-tumoral necroptosis can in fact promote cancer by conditioning the immune system,” the author continues.

The inflammation creates an environment where the body’s anti-cancer immune response is suppressed, preventing immune cells from attacking threats like cancer cells. This, in turn, can promote tumor metastasis. Surprisingly, the researchers observed that this inflammation also pushes the cancer cells to behave more like immature neuron-like cells, a state that makes them better at spreading and that is associated with relapse.

While it remains unknown whether similar pre-tumoral inflammation also occurs in human patients, this work identifies a mechanism contributing to the aggressiveness and patient relapse in SCLC that could be exploited as a way to improve the efficiency of future therapies and early-stage diagnostic methods. ScienceMission sciencenewshighlights.


Small cell lung cancer (SCLC) is one of the most aggressive forms of lung cancer, with a five-year survival rate of only five percent. Despite this poor prognosis, SCLC is initially highly responsive to chemotherapy. However, patients typically relapse and experience very rapid disease progression. Current research into the biological mechanisms behind SCLC remains essential in order to prolong treatment responses, overcome relapse and, ultimately, improve long-term patient outcomes.

How scientists are turning thyme into precision medicine

Thyme extract is packed with health-promoting compounds, but it is difficult to control and easy to waste. Researchers created a new technique that traps tiny amounts of the extract inside microscopic capsules, preventing evaporation and irritation. The method delivers consistent nanodoses and could eventually be used in medicines or food products. It may also work for many other natural extracts.

/* */