Toggle light / dark theme

Burden of Central Nervous System Cancer in the United States

While incidence rates for central nervous system cancer remained stable from 1990 to 2021, both mortality and disability-adjusted life-years (DALYs) declined. Disparities by geography, age, sex, and sociodemographic status highlight needs for targeted health policy reforms and resource redistribution.


Findings In this cross-sectional study, analysis of the Global Burden of Disease Study 2021 data on US CNS cancers revealed that although the incidence rate remained relatively stable, both disability-adjusted life-years and mortality rates declined. However, substantial disparities persisted across geographical location, age, sex, and sociodemographic profile.

Meaning The persistent disparity in CNS cancer burden highlights the urgent need to reevaluate public health policies and redistribute health care resources to better support marginalized and underserved populations.

Eco-Friendly Agrochemicals: Embracing Green Nanotechnology

In the pursuit of sustainable agricultural practices, researchers are increasingly turning to innovative approaches that blend technology and environmental consciousness. A recent study led by M.R. Salvadori, published in Discover Agriculture, delves into the promising world of green nanotechnology in agrochemicals. This research investigates how nanoscale materials can enhance the effectiveness of agrochemicals while minimizing their environmental footprint. The findings suggest that this novel approach may revolutionize crop protection and nutrient delivery systems.

Nanotechnology involves manipulating materials at the nanoscale, typically between 1 and 100 nanometers. At this scale, materials exhibit unique properties that differ significantly from their bulk counterparts. These properties can be harnessed to improve the delivery and efficacy of agrochemicals. For instance, nanosized fertilizers can increase the availability of nutrients to plants, enhancing growth and reducing waste. This targeted approach is essential in combating soil nutrient depletion and ensuring food security in an era of burgeoning global population.

Traditional agrochemicals often come with the burden of negative environmental impacts, including soil and water contamination. The introduction of green nanotechnology aims to address these concerns by developing more biodegradable and environmentally friendly agrochemicals. By using nanomaterials derived from natural sources, researchers hope to create a symbiotic relationship between agricultural practices and ecological health. This paradigm shift could pave the way for a new era of environmentally responsible farming.

Scientists May Have Discovered a Way to Rejuvenate The Immune System

As we age, the immune system gradually declines in function, leaving the body more vulnerable to disease. Scientists have discovered a new way to rejuvenate a key component of immune function, potentially boosting health in later years.

A team from the Broad Institute of MIT and Harvard focused on the thymus, a small organ in front of the heart that’s crucial for the development of T cells. These immune cells act as guards, identifying and fighting threats such as cancer and infections.

From early adulthood, the thymus shrinks and slows, limiting T cell production. In mouse models, the researchers were able to repurpose part of the liver as a thymus substitute, sending the molecular signals that stimulate T-cell production.

Off-grid filtration technology can remove over 99% of nanoplastics smaller than 50 nm

Professor Jeong-Min Baik’s research group of the SKKU School of Advanced Materials Science and Engineering has developed a reusable electrokinetic filtration platform capable of filtering more than 99% of ultrafine nanoplastic particles smaller than 50 nm even under commercial-level high-flow conditions.

Plastic pollution, which has surged in recent years through industrialization and the pandemic era, poses a direct threat to human health. In particular, nanoplastics smaller than 100 nm—thousands of times thinner than a human hair—can readily pass through biological membranes in the body and trigger serious diseases such as immune dysregulation and carcinogenicity.

However, conventional water purification systems have struggled to effectively remove nanoplastics of such small sizes, highlighting technological limitations; studies have even reported the presence of hundreds of thousands of particles in a single bottle of bottled water.

Abstract: Secondary bacterial infections are a common complication in influenza A infection, but targets for prevention are lacking

Secondary bacterial infections are a common complication in influenza A infection, but targets for prevention are lacking.

Here, Susanne Herold & team suggest that targeting neutrophil-driven alveolar macrophage death in severe influenza pneumonia strengthens host defense and prevents the transition to secondary bacterial infection:

The figure shows leukocyte infiltration in mouse lung tissue caused by pneumococcal infection a week after influenza A infection.


1Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), member of the German Center for Infection Research (DZIF), Justus Liebig University Giessen, Giessen, Germany.

2Institute of Lung Health (ILH), Justus Liebig University Giessen, Giessen, Germany.

3Excellence Cluster Cardio-Pulmonary Institute (CPI), Hessen, Germany.

Abstract: Caught in the crossfire: cardiac complications of cancer therapy

In this Review, Emilio Hirsch discuss the mechanisms and therapeutic strategies for cardiotoxicity caused by chemotherapy, targeted agents, and immune modulators.


1Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center “Guido Tarone”, University of Torino, Torino, Italy.

2University of Arizona College of Medicine, Tucson, Arizona, USA.

Address correspondence to: Emilio Hirsch or Alessandra Ghigo, Via Nizza 52, 10126, Turin, Italy. Phone: 39.011.670.6425; Email: [email protected] (EH). Phone: 39.011.670.6335; Email: [email protected] (AG). Or to: Hossein Ardehali, 3,838 North Campbell Avenue, Building 2, Tucson, Arizona 85,719, USA. Phone: 520.626.6453; Email: [email protected].

Red light therapy shows promise for protecting football players’ brains

Punch-drunk syndrome, boxer’s madness, chronic traumatic encephalopathy (CTE). The name has changed over the years, but the cause is clear: repeated impacts can affect long-term brain health, with symptoms ranging from confusion to memory loss and potentially dementia. More than 100 former NFL football players have been posthumously diagnosed with CTE.

What’s less clear is how to fix the problem. Even impacts that don’t directly affect the head may cause microscopic damage or initiate toxic processes that unfold over time, and current therapies for concussion and head impacts tend to address symptoms, like headache and balance issues, that can arise well after the initial injury.

But an unorthodox treatment called red light therapy, which shines powerful near-infrared light at the brain through the skull, may be able to prevent or reduce subtle damage to the brain before symptoms start, by reducing brain inflammation caused by repetitive impacts.

A new atlas could help guide researchers studying neurological disease

Functioning brain cells need a functioning system for picking up the trash and sorting the recycling. But when the cellular sanitation machines responsible for those tasks, called lysosomes, break down or get overwhelmed, it can increase the risk of Alzheimer’s, Parkinson’s, and other neurological disorders.

“Lysosomal function is essential for brain health, and mutations in lysosomal genes are risk factors for neurodegenerative diseases,” said Monther Abu-Remaileh, a Wu Tsai Neuro affiliate and an assistant professor of chemical engineering in the Stanford School of Engineering and an assistant professor of genetics in the Stanford School of Medicine.

The trouble is, scientists aren’t sure exactly how lysosomes do their work, what’s going wrong with lysosomes that leads to neurodegeneration—or even in which cell types neurodegenerative disease begins. There might even be other lysosomal disorders yet to be discovered.

Growth chambers could enable reproducible plant-microbe data across continents

Harnessing the power of artificial intelligence to study plant microbiomes—communities of microbes living in and around plants—could help improve soil health, boost crop yields, and restore degraded lands. But there’s a catch: AI needs massive amounts of reliable data to learn from, and that kind of consistent information about plant-microbe interactions has been hard to come by.

In a new paper in PLOS Biology, researchers in the Biosciences Area at Lawrence Berkeley National Laboratory (Berkeley Lab) led an international consortium of scientists to study whether small plastic growth chambers called EcoFABs could help solve this problem.

Building on their previous work with microbe-free plants, the scientists used the Berkeley Lab-developed devices to run identical plant–microbe experiments across labs on three continents and got matching results. The breakthrough shows that EcoFABs can remove one of the biggest barriers in microbiome research: the difficulty of reproducing experiments in different places.

Neuropsychiatric symptoms in cognitive decline and Alzheimer’s disease: biomarker discovery using plasma proteomics

Placental toxicology progress!

Commonly used in vitro and in vivo placental models capture key placental functions and toxicity mechanisms, but have significant limitations.

The physiological relevance of placental models varies, with a general hierarchy of simple in vitro complex in vitro/ organ-on-chip in vivo, but species-of origin considerations may alter their relevance to human physiology.

Cellular, rodent, human, and computational modeling systems provide insights into placental transport, physiology, and toxicology linked to maternal–fetal health.

Recent advances in 3D culture and microfluidic technologies offer more physiologically relevant models for studying the placenta.

Mathematical modeling approaches can integrate mechanistic physiological data and exposure assessments to define key toxicokinetic parameters.

Environmental chemical concentrations and omic data obtained from placental tissues can link toxicant influences on placental function to adverse birth outcomes.

/* */