Seafood waste becomes a powerful heat storage material, stopping leakage in phase change materials.
Chitin-derived carbon aerogel prevents leakage in phase change materials, boosting durable and sustainable heat storage.
A research team led by Prof. Liu Liangyun from the Aerospace Information Research Institute of the Chinese Academy of Sciences (AIRCAS) has produced the first comprehensive, high-resolution map of global city and town boundaries, offering a view of how urban boundaries have expanded and transformed over the past two decades. The new dataset—derived from 30-meter-resolution satellite observations—fills a long-standing gap in global urban studies.
Cities and towns are the dominant form of human settlement, playing a crucial role in sustaining ecological balance and advancing sustainable development. However, their complex spatial structures and rapid evolution have made high-resolution global urban boundary datasets scarce. To address this gap, the team integrated the GISD30 global impervious surface dynamic dataset with LandScan global population data to develop the Global City and Town Boundaries (GCTB) Dataset, which covers the period from 2000 to 2022.
Published in Scientific Data, the study details the researchers’ development of a morphology-oriented boundary delineation framework that combines kernel density estimation (KDE) and cellular automata (CA) to accurately map urban boundaries. When compared with multiple reference datasets, the GCTB Dataset showed the strongest agreement with the manually curated Atlas of Urban Expansion, achieving an R2 value of approximately 0.88—indicating high reliability in capturing urban extents.
Automation and robotics, particularly with the integration of AI, are transforming industries and poised to significantly impact the workforce, but are likely to lead to a reduction in work hours and increased productivity rather than total job destruction.
## Questions to inspire discussion.
Investment & Market Opportunity.
🤖 Q: What is the revenue potential for robotics by 2025? A: ARK Invest projects a $26 trillion global revenue opportunity across household and manufacturing robotics by 2025, driven by convergence of humanoid robots, AI, and computer vision technologies.
💰 Q: How should companies evaluate robot ROI for deployment? A: Robots are worth paying for based on task-specific capabilities delivering 2–10% productivity gains, unlike autonomous vehicles requiring full job performance—Roomba succeeded despite early limitations by being novel and time-saving for specific tasks.
Implementation Strategy.
A new battery technology has been developed that delivers significantly higher energy storage—enough to alleviate EV range concerns—while lowering the risk of thermal runaway and explosion.
A research team at POSTECH has developed a next-generation hybrid anode that uses an external magnetic field to regulate lithium-ion transport, effectively suppressing dendrite growth in high-energy-density electrodes.
A POSTECH research team—led by Professor Won Bae Kim of the Department of Chemical Engineering and the Graduate School of Battery Engineering, together with Dr. Song Kyu Kang and integrated Ph.D. student Minho Kim—has introduced a “magneto-conversion” strategy that applies an external magnetic field to ferromagnetic manganese ferrite conversion-type anodes.
Skoltech scientists conducted a study that advances research on future batteries. Their paper, published in Small, sheds light on recent advances in designing multilayered structures of alkali metals, such as lithium, sodium, and potassium, within carbon anode materials.
This technology has the potential to transform the energy storage market, enabling electric vehicles to charge in minutes and providing green energy with stable, safe, and affordable storage systems.
How multilayered structures improve batteries For years, ions were believed to form only single-atom layers in a battery’s carbon materials, such as graphite. In 2018, researchers used a high-precision electron microscope and discovered a new configuration with ultradense, multiatom layers of lithium forming between two sheets of graphene.
Tesla is poised to reach a $3 trillion valuation by 2026, driven by its advancements in AI, autonomous vehicles, and robotics, which are expected to outweigh its challenges in EV sales and regulatory pressures ## Questions to inspire discussion.
Autonomous Driving Deployment Timeline.
🚕 Q: What are Tesla’s specific robotaxi deployment targets for 2026?
A: Tesla aims to launch robotaxis without safety drivers in 30 cities by 2026 while significantly expanding geo-fenced areas in cities like Austin, leveraging its 10 million cars on the road to scale autonomy faster than competitors through superior data collection advantage.
🎯 Q: What evidence do investors need to see in 2026 to validate Tesla’s autonomous strategy?
A: Investors must see city-by-city proof of autonomous accuracy, achievement of true level 5 autonomy, measurable regulatory progress, and rapid scaling capability across multiple markets to confirm the long-term bullish thesis.
Graphene is often described as a wonder material. It is strong, electrically conductive, thermally efficient, and remarkably versatile. Yet despite more than a decade of excitement, many graphene-based technologies still struggle to move beyond the laboratory.
One of the key challenges is that graphene does not readily dissolve in common solvents, forcing researchers to rely on harsh, multi-step functionalization/modification processes to make it usable.
As a researcher working at the intersection of green chemistry and nanomaterials, I have often found myself asking a simple question: Can we design advanced materials without relying on environmentally costly processes?
Research published in the Journal of the American Chemical Society demonstrates a new way to make carbon-based battery materials much safer, longer lasting, and more powerful by fundamentally redesigning how fullerene molecules are connected.
Today’s lithium-ion batteries rely mainly on graphite, which limits fast-charging speed and poses safety risks due to lithium plating. These research findings mean progress toward safer electric vehicles, longer-lasting consumer electronics, and more reliable renewable-energy storage.
Questions to inspire discussion.
Launch Economics & Viability.
🚀 Q: What launch cost makes space data centers economically competitive? A: Space data centers become cost-competitive with ground systems when launch costs drop to approximately $200/kg, according to Google’s Suncatcher paper, making the economics viable for moving compute infrastructure off-Earth.
💰 Q: Why might SpaceX pursue a $1.5 trillion IPO valuation? A: The projected $1.5 trillion SpaceX IPO valuation is speculated to fund the capital-intensive race to establish space-based data centers and secure the best orbital positions before competitors.
🏢 Q: Which companies can realistically build space data centers first? A: Vertically integrated organizations like SpaceX, Relativity Space, and Blue Origin lead because they control launch infrastructure, can self-fund deployment, and serve as their own customers for space compute capacity.
🛰️ Q: How would space data centers physically connect GPUs across satellites? A: Multiple free-flying satellites in formation (like 20+ Starlink satellites) use inter-satellite optical connections to enable communication between GPUs, creating high-density computing clusters in orbit.