Toggle light / dark theme

Groundbreaking 2D Nanomaterial Rolls Into a New Dimension

MXene nanoscrolls transform flat 2D materials into conductive 1D structures, unlocking advances in energy storage, sensing, wearables, and superconductivity. Nearly 15 years after identifying a versatile two-dimensional conductive nanomaterial known as MXene, researchers at Drexel University have

Sometimes less is more: Messier nanoparticles may actually deliver drugs more effectively than tightly packed ones

The tiny fatty capsules that deliver COVID-19 mRNA vaccines into billions of arms may work better when they’re a little disorganized. That’s the surprising finding from researchers who developed a new way to examine these drug-delivery vehicles one particle at a time—revealing that cramming in more medicine doesn’t always mean better results.

The research was presented at the 70th Biophysical Society Annual Meeting, held in San Francisco from February 21–25, 2026.

Lipid nanoparticles, or LNPs, are microscopic bubbles of fat that can ferry fragile RNA molecules into cells. They were crucial to the success of mRNA vaccines, and scientists are now working to use them to deliver treatments for cancer, genetic diseases, and other conditions. But there’s a problem: only about 1% to 5% of the cargo inside LNPs actually gets released inside cells.

Chemistry-powered ‘breathing’ membrane opens and closes tiny pores on its own

Ion channels are narrow passageways that play a pivotal role in many biological processes. To model how ions move through these tight spaces, pores need to be fabricated at very small length scales. The narrowest regions of ion channels can be just a few angstroms wide, about the size of individual atoms, making reproducible and precise fabrication a major challenge in modern nanotechnology.

In a study published in Nature Communications, researchers at The University of Osaka have addressed this challenge by using a miniature electrochemical reactor to create ultra-small pores approaching subnanometer dimensions.

In biological cells, ions flow in and out through channels in cell membranes. This ion flow is the basis for generating electrical signals, such as nerve impulses that trigger muscle contraction. The channels themselves are made of proteins and can have angstrom-wide narrow regions. Conformational changes of these proteins in response to external stimuli open and close the channels.

Transistor-like MXene membranes enhance ion separation

By applying voltage to electrically control a new “transistor” membrane, researchers at Lawrence Livermore National Laboratory (LLNL) achieved real-time tuning of ion separations—a capability previously thought impossible. The recent work, which could make precision separation processes like water treatment, drug delivery and rare earth element extraction more efficient, was published in Science Advances.

The membranes are made of stacks of MXenes —2D sheets that are only a few atoms thick. Ions squeeze through nanoscale channels formed in the gaps between the stacked MXene layers.

Until now, scientists thought MXene membrane properties were intrinsic and unchangeable once created. The rate of ion transport was thought to be baked in from the beginning.

Kirigami-inspired sensors precisely map activity of neurons in the primate brain

Recent technological advances have opened new exciting possibilities for the development of smart prosthetics, such as artificial limbs, joints or organs that can replace injured, damaged or amputated body parts. These same advances are also enabling the development of other systems that connect the brain with machines, to record the activity of neurons or allow humans to operate machines in entirely new ways.

Researchers at the Chinese Institute for Brain Research, the National Center for Nanoscience and Technology in Beijing and other institutes recently developed a new flexible and implantable sensor that can record the activity of neurons in the brain of non-human primates. The sensing device, introduced in a paper published in Nature Electronics, is inspired by kirigami, an artistic discipline that entails the creation of intricate structures by folding and cutting paper in specific ways.

“The development of brain–computer interfaces requires implantable microelectrode arrays that can interface with numerous neurons across large spatial and temporal scales,” wrote Runjiu Fang, Huihui Tian and their colleagues in their paper.

Silicon nanowire based angle robust ultrasensitive hyperbolic metamaterial biosensor

We design an angle-robust hyperbolic metamaterial-based biosensor structure using n-doped silicon nanowires. We examine the hyperbolic properties of the structure using effective medium theory (EMT) and analyze the resonance shift of our proposed biosensor structure, by employing the finite-difference time d.

Single-Shot Parity Readout of a Minimal Kitaev Chain: A Breakthrough in Majorana Qubits

In a major technical leap published in Nature on February 11, 2026, an international research team led by QuTech (Delft University of Technology) and the Spanish National Research Council (CSIC) has demonstrated the first single-shot, real-time readout of the quantum information stored in Majorana qubits. This achievement addresses the “readout problem”—the long-standing experimental hurdle of measuring a non-locally distributed quantum state without compromising its inherent topological protection.

The study, titled Single-shot parity readout of a minimal Kitaev chain,” utilizes a novel quantum capacitance technique to sense the global state of a “Kitaev minimal chain.” By constructing a bottom-up nanostructure of two semiconductor quantum dots coupled via a superconductor, the team successfully generated Majorana zero modes (MZMs) in a controlled, modular fashion. This “Lego-like” approach allowed the researchers to discriminate between the even and odd parity states (the 0 and 1 of the qubit) in real-time, effectively unlocking the “safe box” of topological information.

A double helix twist in HIV vaccine design

In a new Science study, researchers demonstrate that DNA origami can be used to display HIV protein antigens. When given to mice, these nanoparticles elicited antibody responses that may pave the way for broadly protective immunity against infection.

This approach could lead to more effective HIV vaccines. Learn more in a new Science Perspective.


DNA origami scaffolds displaying HIV antigens stimulate focused antibody responses in mice.

Oliver Bannard and Mark R. Howarth Authors Info & Affiliations

Science

Vol 391, Issue 6785

Light-based sensor detects early molecular signs of cancer in the blood

Researchers have developed a highly sensitive light-based sensor that can detect extremely low concentrations of cancer biomarkers in the blood. The new technology could one day make it possible to spot early signs of cancer and other conditions using a simple blood test.

Biomarkers such as proteins, DNA or other molecules can be used to reveal the presence, progression or risk of cancer and other diseases. However, one of the main challenges in early disease diagnosis is the extremely low concentration of biomarkers present at the onset.

“Our sensor combines nanostructures made of DNA with quantum dots and CRISPR gene editing technology to detect faint biomarker signals using a light-based approach known as second harmonic generation (SHG),” said research team leader Han Zhang from Shenzhen University in China.

Silicon metasurfaces boost optical image processing with passive intensity-based filtering

Of the many feats achieved by artificial intelligence (AI), the ability to process images quickly and accurately has had an especially impressive impact on science and technology. Now, researchers in the McKelvey School of Engineering at Washington University in St. Louis have found a way to improve the efficiency and capability of machine vision and AI diagnostics using optical systems instead of traditional digital algorithms.

Mark Lawrence, an assistant professor of electrical and systems engineering, and doctoral student Bo Zhao developed this approach to achieve efficient processing performance without high energy consumption. Typically, all-optical image processing is highly constrained by the lack of nonlinearity, which usually requires high light intensities or external power, but the new method uses nanostructured films called metasurfaces to enhance optical nonlinearity passively, making it practical for everyday use.

Their work shows the ability to filter images based on light intensity, potentially making all-optical neural networks more powerful without using additional energy. Results of the research were published online in Nano Letters on Jan. 21, 2026.

/* */