Speakers: Milán Janosov, Cecile Tamura
Yeast cells can be used to convert agricultural and forestry residues, as well as industrial byproducts, into valuable bioproducts. New and unexplored yeast strains may have properties that can enhance the commercial competitiveness of this sustainable production. In a study recently published in Applied and Environmental Microbiology, researchers collected and examined the biotechnological potential of 2,000 West African yeast strains.
The study—the first of its kind—is a collaboration between the University of Nigeria, Chalmers University of Technology, and the University of Gothenburg. It is based on a nationwide collection of samples from fruit, bark, soil, and waterways in Nigeria. This approach, known as bioprospecting, involves exploring various plants or microorganisms in nature to identify properties that can be utilized for different industrial or societal applications.
In this study, researchers searched for new yeast species with the potential use in industrial production of biochemicals, pharmaceuticals, and food ingredients.
Take the Space Time Fan Survey Here: https://forms.gle/wS4bj9o3rvyhfKzUA
PBS Member Stations rely on viewers like you. To support your local station, go to: http://to.pbs.org/DonateSPACE
Sign Up on Patreon to get access to the Space Time Discord!
https://www.patreon.com/pbsspacetime.
Imagine you’re leading a game of 20 questions and you forget the thing you chose half way through. You have to keep answering yesses and nos and hope that you think of something that’s consistent with all your previous questions before the game is done. Well it could be that’s what the entire universe is doing. I hope it thinks of something good before we run out of questions.
DeepSeek, TikTok, CapCut, Shein, Temu, BYD, DJI, Huawei — Chinese technology is everywhere and in many areas the country is challenging the former high-tech powerhouses.
It’s all down to an ambitious plan China set out 10 years ago. The Made in China 2025 project vowed to turn China from the world’s factory to the world’s innovator.
And according to experts – they have largely succeeded. So how did they do it and what does it mean for the rest of the world and the future of technology dominance? Our Cyber Correspondent, Joe Tidy, explains.
00:00 Introduction.
What astonishing phenomena might materials reveal when they are subjected to conditions mimicking the extremes of the cosmos-ultra-low temperatures, magnetic fields that are hundreds of thousands of times stronger than Earth’s, and pressure close to that at the planet’s core?
The Synergetic Extreme Condition User Facility (SECUF), located in Beijing’s suburban Huairou District, is opening a portal for scientists to observe the bizarre phenomena of matter under such extreme environments.
After starting construction in September 2017, the SECUF passed national acceptance review on Wednesday, marking the completion of the internationally advanced experimental facility integrating extreme conditions such as ultra-low temperature, ultra-high pressure, strong magnetic fields, and ultra-fast optical fields.
A comparison of neutrinos measured 1 km and 810 km from their source finds no evidence of a putative fourth neutrino flavor.
A new formula that connects a material’s magnetic permeability to spin dynamics has been derived and tested 84 years after the debut of its electric counterpart.
If antiferromagnets, altermagnets, and other emerging quantum materials are to be harnessed for spintronic devices, physicists will need to better understand the spin dynamics in these materials. One possible path forward is to exploit the duality between electric and magnetic dynamics expressed by Maxwell’s equations. From this duality, one could naively expect mirror-like similarities in the behavior of electric and magnetic dipoles. However, a profound difference between the quantized lattice electric excitations—such as phonons—and spin excitations—such as paramagnetic and antiferromagnetic spin resonances and magnons—has now been unveiled in terms of their corresponding contributions to the static electric susceptibility and magnetic permeability. Viktor Rindert of Lund University in Sweden and his collaborators have derived and verified a formula that relates a material’s magnetic permeability to the frequencies of magnetic spin resonances [1].
A pioneering thermal imaging camera built by the University of Oxford.
The University of Oxford is a collegiate research university in Oxford, England that is made up of 39 constituent colleges, and a range of academic departments, which are organized into four divisions. It was established circa 1096, making it the oldest university in the English-speaking world and the world’s second-oldest university in continuous operation after the University of Bologna.
Scientists have unlocked a new understanding of mesoporous silicon, a nanostructured version of the well-known semiconductor. Unlike standard silicon, its countless tiny pores give it unique electrical and thermal properties, opening up potential applications in biosensors, thermal insulation, photovoltaics, and even quantum computing.
Performing computation using quantum-mechanical phenomena such as superposition and entanglement.