Toggle light / dark theme

91-qubit Processor Accurately Simulates Many-Body Quantum Chaos

Quantum chaos describes chaotic classical dynamical systems in terms of quantum theory, but simulations of these systems are limited by computational resources. However, one team seems to have found a way by leveraging error mitigation and specialized circuits on a 91-qubit superconducting quantum processor. Their results are published in Nature Physics.

While useful quantum simulations require an ability to eliminate errors, full quantum error correction requires large overheads in qubits and control. Previous work has gotten around this problem by simulating limited quantum many-body systems mostly at smaller scales or with integrable—or less chaotic—models.

The research team involved in the new study opted for a different method. Instead, they used error mitigation, which accepts noise and then corrects errors later, saving computational resources in the process.

A clearer look at critical materials, thanks to refrigerator magnets

With an advanced technology known as angle-resolved photoemission spectroscopy (ARPES), scientists are able to map out a material’s electron energy-momentum relationship, which encodes the material’s electrical, optical, magnetic and thermal properties like an electronic DNA. But the technology has its limitations; it doesn’t work well under a magnetic field. This is a major drawback for scientists who want to study materials that are deployed under or even actuated by magnetic fields.

Inspired by refrigerator magnets, a team of Yale researchers may have found a solution. Their study was featured recently on the cover of The Journal of Physical Chemistry Letters.

Quantum materials —such as unconventional superconductors or topological materials—are considered critical to advancing quantum computing, high-efficiency electronics, nuclear fusion, and other fields. But many of them need to be used in the presence of a magnetic field, or even only become activated by magnetic fields. Being able to directly study the electronic structure of these materials in magnetic fields would be a huge help in better understanding how they work.

Natural magnetic materials can control light in unprecedented ways

Imagine shining a flashlight into a material and watching the light bend backward—or in an entirely unexpected direction—as if defying the law of physics. This phenomenon, known as negative refraction, could transform imaging, telecommunications, and countless other technologies. Now, a team of scientists has managed to use a natural magnetic material called CrSBr to achieve negative refraction—without the need for complicated artificial structures. The study, published in Nature Nanotechnology, opens the door to ultra-compact lenses, super-high-resolution microscopes, and reconfigurable optical devices that can be controlled with magnets.

The researchers used a very thin layer of CrSBr, a material that has a unique magnetic structure—its magnetic atoms align in different ways within and between layers. This magnetic order changes how the material interacts with light. When the magnetic order is active, it causes light to bend “the wrong way,” creating negative refraction.

By guiding light into this material on a tiny chip, the team visually confirmed the backward bending of light. They also built a miniature “hyperlens” —a device that can focus light into extremely small spots—an essential step for future high-precision imaging and data processing.

Focusing and defocusing light without a lens: First demonstration of the structured Montgomery effect in free space

Applied physicists in the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have demonstrated a new way to structure light in custom, repeatable, three-dimensional patterns, all without the use of traditional optical elements like lenses and mirrors. Their breakthrough provides experimental evidence of a peculiar natural phenomenon that had been confined mostly to theory.

Researchers from the lab of Federico Capasso, the Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering, report in Optica the first experimental demonstration of the little-known Montgomery effect, in which a coherent beam of light seemingly vanishes, then sharply refocuses itself over and over, in free space, at perfectly placed distances. This lensless, repeatable patterning of light could lay the groundwork for powerful new tools in many areas including microscopy, sensing, and quantum computing.

This effect had been predicted mathematically in the 1960s but never observed under controlled lab conditions. The new work underscores not only that the effect is real, but that it can be precisely engineered and tuned.

Real-time single-event position detection using high-radiation-tolerance GaN

Silicon semiconductors are widely used as particle detectors; however, their long-term operation is constrained by performance degradation in high-radiation environments. Researchers at University of Tsukuba have demonstrated real-time, two-dimensional position detection of individual charged particles using a gallium nitride (GaN) semiconductor with superior radiation tolerance.

Silicon (Si)-based devices are widely used in electrical and electronic applications; however, prolonged exposure to high radiation doses leads to performance degradation, malfunction, and eventual failure. These limitations create a strong demand for alternative semiconductor materials capable of operating reliably in harsh environments, including high-energy accelerator experiments, nuclear-reactor containment systems, and long-duration lunar or deep-space missions.

Wide-bandgap semiconductors, characterized by strong atomic bonding, offer the radiation tolerance required under such conditions. Among these materials, gallium nitride (GaN)—commonly employed in blue light-emitting diodes and high-frequency, high-power electronic devices—has not previously been demonstrated in detectors capable of two-dimensional particle-position sensing for particle and nuclear physics applications.

Massive Quantum Leap: New Tech Could Enable 100,000-Qubit Computers

They combined optical tweezers with metasurfaces to trap more than 1,000 atoms, with the potential to capture hundreds of thousands more. Quantum computers will only surpass classical machines if they can operate with far more quantum bits, known as qubits. Today’s most advanced systems contain r

Russian hackers exploit recently patched Microsoft Office bug in attacks

Ukraine’s Computer Emergency Response Team (CERT) says that Russian hackers are exploiting CVE-2026–21509, a recently patched vulnerability in multiple versions of Microsoft Office.

On January 26, Microsoft released an emergency out-of-band security update marking CVE-2026–21509 as an actively exploited zero-day flaw.

CERT-UA detected the distribution of malicious DOC files exploiting the flaw, themed around EU COREPER consultations in Ukraine, just three days after Microsoft’s alert.

Epistasis study uncovers genetic interactions linked to heart disease

Euan Ashley’s lab explores the intricate interactions of gene variants. Tiny “typos,” or genetic mutations, can sneak into segments of DNA. Many of these are harmless, but some can cause health problems. Two or more genes can team up and change the outcome of a physical or molecular trait. This phenomenon, known as epistasis, occurs through complex interactions between genes that are functionally related—such as those that support protein creation.

Identifying these group dynamics provides crucial clues to how genetic diseases manifest and should be treated. But they’re not easily detected and often fly under the radar.

To help root out these connections, Ashley, MB ChB, DPhil, professor of genetics and of biomedical data science, and a team of scientists, including co-corresponding author Bin Yu, Ph.D., a professor of statistics and of electrical engineering and computer sciences at the University of California, Berkeley, have developed computational techniques to identify and understand the hidden ways epistasis influences inherited diseases.

Telecommunications beyond 6G: the first standalone spin-wave chip with a built-in magnetic field

Milan, 13th January 2025 — The Politecnico di Milano has created the first integrated and fully tunable device based on spin waves, opening up new possibilities for the telecommunications of the future, far beyond current 5G and 6G standards. The study, published in the journal Advanced Materials, was conducted by a research group led by Riccardo Bertacco of the Department of Physics of the Politecnico di Milano, in collaboration with Philipp Pirro of Rheinland-Pfälzische Technische Universität and Silvia Tacchi of Istituto Officina dei Materiali — CNR-IOM.

Magnonics is an emerging technology that uses spin waves – collective excitations of electronic spins in magnetic materials – as an alternative to electrical signals. The spread of this technology has been restricted until now by the need for an external magnetic field, which has prevented it being incorporated into chips.

The new device developed at the Politecnico overcomes this hurdle: it is miniaturised (100 × 150 square micrometres, so much smaller than current radiofrequency signal processing devices based on acoustic waves); it is fully integrated on silicon – and therefore compatible with existing electronic platforms, and it functions without external magnets, thanks to an innovative combination of permanent SmCo micromagnets and magnetic flux concentrators.

/* */