Blog

Archive for the ‘computing’ category

Jul 18, 2019

The plan to mine the world’s research papers

Posted by in categories: computing, law

Carl Malamud is on a crusade to liberate information locked up behind paywalls — and his campaigns have scored many victories. He has spent decades publishing copyrighted legal documents, from building codes to court records, and then arguing that such texts represent public-domain law that ought to be available to any citizen online. Sometimes, he has won those arguments in court. Now, the 60-year-old American technologist is turning his sights on a new objective: freeing paywalled scientific literature. And he thinks he has a legal way to do it.


A giant data store quietly being built in India could free vast swathes of science for computer analysis — but is it legal? A giant data store quietly being built in India could free vast swathes of science for computer analysis —but is it legal?

Jul 17, 2019

Team efficient microchip

Posted by in categories: biotech/medical, computing, health, mobile phones

Researchers at MIT and Texas Instruments have designed a new chip for portable electronics that could be up to 10 times more energy-efficient than present technology. Given its reduced power consumption, the new chip could lead to cell phones, handheld computers, and remote sensors that last far longer when running from a battery.

Indeed, the power required could be so low that implantable medical devices such as pacemakers and health monitors could be powered indefinitely by a person’s body heat or motion—no battery needed.

According to Anantha Chandrakasan, the Joseph F. and Nancy P. Keithley Professor of Electrical Engineering, the key to the improvement in energy efficiency was finding ways to make the circuits on the chip work at a voltage level much lower than usual. While most current chips operate at around 1.0 volt, the new design works at just 0.3 volts.

Jul 17, 2019

Elon Musk says his Neuralink startup already has a brain-machine interface working in monkeys

Posted by in categories: computing, Elon Musk, neuroscience

Neuralink, Elon Musk’s startup that’s trying to directly link brains and computers, has developed a system to feed thousands of electrical probes into a brain and hopes to start testing the technology on humans in in 2020, Chief Executive Elon Musk revealed Tuesday. And it’s working already in animal tests. “A monkey has been able to control a computer with his brain,” Musk said at a San Francisco Click on photo to start video.

&feature=youtu.behttps%3A%2F%2Fwww.mozilla.org%2Fen-US%2Ffirefox%2F70.0a1%2Fwhatsnew%2F%3Foldversion%3D69.0a1” target=“_blank” data-component=“externalLink” rel=“noopener”>livestreaming the presentation on YouTube Tuesday, revealing even more research results than the company’s scientists expected.

Neuralink’s initial goal is to help people deal with brain and spinal cord injuries or congenital defects, Musk said. The technology could help paraplegics who have lost the ability to move or sense because of spinal cord injury — a medical treatment that’s a lot less shocking than radical sci-fi ideas like “consensual telepathy.”

Jul 17, 2019

Mind Upload And Immortality

Posted by in categories: computing, life extension

Would you upload your mind into a computer?

Jul 17, 2019

Is there an upper limit to WiFi speed?

Posted by in categories: computing, internet

As with many of my recent posts, this was originally a reply to a member of Quora, a Q&A web forum. But, it fits within Lifeboat’s educational mission and our fascination to push the limits of creativity and tech.

Is there a theoretical speed limit to WiFi devices over the next 10 years?

Because of four recent practices,* it is difficult to predict an upper limit for future overall throughput:

  1. Channel bonding
  2. Beam steering (MIMO shaping and directing the antenna pattern)
  3. Mesh Networking (i.e. subdividing a service area into micro-cells). Residential examples: Google WiFi, Netgear Orbi or TP-Link Deco
  4. Ultra wideband or Ultra-high frequency: In 2017, both Netgear and Asus introduced routers with 802.11ad WiFi (‘WiFi AD’). Although it still not widely adopted, it adds a 60 GHz radio to the existing 2.4 and 5 GHz radios, supporting 7 Gbps network speed).

Note that none of these techniques demands a high output power per channel. They all use ‘tricks’ to achieve higher speeds. But the tricks are scaleable. There really is no upper limit to any of these techniques.

Continue reading “Is there an upper limit to WiFi speed?” »

Jul 17, 2019

Elon Musk on Joe Rogan — what is Neuralink

Posted by in categories: computing, Elon Musk, neuroscience

Neuralink is developing ultra-high bandwidth brain-machine interfaces to connect humans and computers.

Jul 16, 2019

Elon Musk’s Neuralink hopes to put sensors in human brains next year

Posted by in categories: computing, Elon Musk, neuroscience

Tonight Elon Musk will present the results of Neuralink’s work on brain-computer interfaces, watch live right here.

Jul 15, 2019

Neurotech Salon lets talk Brain Computer Interfaces, Neuroscience, and Code

Posted by in categories: biotech/medical, computing, neuroscience

Lets meet to talk brain computer interfaces, neuroscience, collaboration and coding. Lets pitch projects to one another, join existing projects, write code together, build new brain computer interfaces and more.

Thinking about past NeurotechX SF meetups I think I like the Salon aspect the most, where people just meet up to talk about neuroscience, brain computer interfaces and coding. So I’m renaming this event series to “Neurotech Salon”, it’s every two weeks in San Francisco at the Red Victorian! Get ready to meet interesting people to talk about things like the future of brain machine interfaces, you can pitch your project, or perhaps join someone elses project, you can talk about your work in developing software, hardware, or your work in medical research, or talk about your studies as an academic.

Confirm your RSVP by making a charitable donation to a real charity like this one here https://www.facebook.com/donate/837355799969191/ in the amount of $5 dollars or more. If you feel like you can’t afford it just skip a meal, and take the money you would have paid for that meal and apply it to this event.

Jul 15, 2019

Path to Million Qubit Quantum Computers Using Atoms and Lasers

Posted by in categories: computing, particle physics, quantum physics

Atom Computing is building quantum computers using individually controlled atoms.

As one of the world’s leading researchers in atomic clocks and neutral atoms, Benjamin Bloom (co-founder of Atom Computing) built the world’s fastest atomic clock, and it is considered the most precise and accurate measurement ever performed.

Ben has shown that neutral atoms could be more scalable, and could build a stable solution to create and maintain controlled quantum states. He used his expertise to lead efforts at Intel on their 10nm semiconductor chip, and then to lead research and development of the first cloud-accessible quantum computer at Rigetti.

Jul 15, 2019

Researchers develop computer model of ferrofluid motion

Posted by in categories: biotech/medical, computing, nanotechnology

Ferrofluids, with their mesmeric display of shape-shifting spikes, are a favorite exhibit in science shows. These eye-catching examples of magnetic fields in action could become even more dramatic through computational work that captures their motion.

A KAUST research team has now developed a computer model of motion that could be used to design even grander ferrofluid displays. The work is a stepping stone to using to inform the use of ferrofluids in broad range of practical applications, such as medicine, acoustics, radar-absorbing materials and nanoelectronics.

Ferrofluids were developed by NASA in the 1960s as a way to pump fuels in low gravity. They comprise nanoscale magnetic particles of iron-laden compounds suspended in a liquid. In the absence of a magnetic , ferrofluids possess a perfectly smooth surface. But when a magnet is brought close to the ferrofluid, the particles rapidly align with the magnetic field, forming the characteristic spiky appearance. If a magnetic object is placed in the ferrofluid, the spikes will even climb the object before cascading back down.

Page 1 of 26612345678Last