Menu

Blog

Archive for the ‘chemistry’ category

Jul 5, 2020

A biohybrid synapse with neurotransmitter-mediated plasticity

Posted by in categories: biological, chemistry, robotics/AI, sustainability

(2019).” href=“https://www.nature.com/articles/s41563-020-0703-y#ref-CR4” id=“ref-link-section-d44243e601”]4, 5 that can both directly interface with living tissue and adapt based on biofeedback6,7. The first essential step towards biologically integrated neuromorphic systems is to achieve synaptic conditioning based on biochemical signalling activity. Here, we directly couple an organic neuromorphic device with dopaminergic cells to constitute a biohybrid synapse with neurotransmitter-mediated synaptic plasticity. By mimicking the dopamine recycling machinery of the synaptic cleft, we demonstrate both long-term conditioning and recovery of the synaptic weight, paving the way towards combining artificial neuromorphic systems with biological neural networks.

Jul 4, 2020

Results of an Experiment

Posted by in categories: chemistry, innovation

A USC Dornsife chemistry professor’s bet on a student proposal leads to new understanding of what defines a metal — and lands the cover of Science.

Ryan McMullen had never heard of the USC Dornsife College of Letters, Arts and Sciences when he started casting about for a graduate chemistry program. But on the recommendation of one of his professors, he sent an email to the College’s Professor of Chemistry Stephen Bradforth proposing an experiment to tease out what makes a metal really a metal.

Continue reading “Results of an Experiment” »

Jul 3, 2020

The lightest electromagnetic shielding material in the world

Posted by in categories: chemistry, materials

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic components or the transmission of signals. High-frequency electromagnetic fields can only be shielded with conductive shells that are closed on all sides. Often thin metal sheets or metallized foils are used for this purpose. However, for many applications such a shield is too heavy or too poorly adaptable to the given geometry. The ideal solution would be a light, flexible and durable material with extremely high shielding effectiveness.

Aerogels against electromagnetic radiation

A breakthrough in this area has now been achieved by a research team led by Zhihui Zeng and Gustav Nyström. The researchers are using nanofibers of as the basis for an aerogel, which is a light, highly porous material. Cellulose fibers are obtained from wood and, due to their , enable a wide range of chemical modifications. They are therefore a highly popular research object. The crucial factor in the processing and modification of these cellulose nanofibres is to be able to produce certain microstructures in a defined way and to interpret the effects achieved. These relationships between structure and properties are the very field of research of Nyström’s team at Empa.

Jul 2, 2020

Fastest Laser Blast — 67 Quintillionths of a Second

Posted by in categories: chemistry, particle physics, quantum physics

:3 Circa 2012


Scientists have been able to generate the world’s fastest laser pulse with a beam shot for 67 attoseconds (0.000000000000000067 seconds). This breaks the previous record of 80 attoseconds that was established in 2008. This could help engineers see extremely rapid quantum mechanical processes, like the movements of electrons during chemical reactions.

The researchers published their findings in the journal Optics Letters. This will allow the study of electron motions with attosecond pulses. The blast was obtained by sending pulses from a titanium-sapphire near-infrared laser through a system known as double optical gating (DOG) in which the gate concentrates the energy of extreme ultraviolet light pulses and focuses them on a cell filled with neon gas.

Continue reading “Fastest Laser Blast — 67 Quintillionths of a Second” »

Jul 2, 2020

Scientists Use Genetics to Develop Better Formula to Calculate Dog Age in “Human Years”

Posted by in categories: biotech/medical, chemistry, genetics

If there’s one myth that has persisted through the years without much evidence, it’s this: multiply your dog’s age by seven to calculate how old they are in “human years.” In other words, the old adage says, a four-year-old dog is similar in physiological age to a 28-year-old person.

But a new study by researchers at University of California San Diego School of Medicine throws that out the window. Instead, they created a formula that more accurately compares the ages of humans and dogs. The formula is based on the changing patterns of methyl groups in dog and human genomes — how many of these chemical tags and where they’re located — as they age. Since the two species don’t age at the same rate over their lifespans, it turns out it’s not a perfectly linear comparison, as the 1:7 years rule-of-thumb would suggest.

Jul 1, 2020

MIT robot disinfects Greater Boston Food Bank

Posted by in categories: biotech/medical, chemistry, food, robotics/AI

With every droplet that we can’t see, touch, or feel dispersed into the air, the threat of spreading COVID-19 persists. It’s become increasingly critical to keep these heavy droplets from lingering—especially on surfaces, which are welcoming and generous hosts.

Thankfully, our chemical cleaning products are effective, but using them to disinfect larger settings can be expensive, dangerous, and time-consuming. Across the globe there are thousands of warehouses, , schools, and other spaces where cleaning workers are at risk.

Continue reading “MIT robot disinfects Greater Boston Food Bank” »

Jun 30, 2020

How a protein’s small change leads to big trouble for cells

Posted by in categories: biotech/medical, chemistry, neuroscience

In molecular biology, chaperones are a class of proteins that help regulate how other proteins fold. Folding is an important step in the manufacturing process for proteins. When they don’t fold the way they’re supposed to, it can lead to the development of diseases such as cancer.

Researchers at the Sloan Kettering Institute have uncovered important findings about what causes chaperones to malfunction as well as a way to fix them when they go awry. The discovery points the way to a new approach for developing targeted drugs for cancer and other diseases, including Alzheimer’s disease.

“Our earlier work showed that defects in chaperones could lead to widespread changes in cells, but no one knew exactly how it happened,” says SKI scientist Gabriela Chiosis, senior author of a study published June 30 in Cell Reports. “This paper finally gets into the nuts and bolts of that biochemical mechanism. I think it’s a pretty big leap forward.”

Jun 29, 2020

Biohydrogel: Saving irrigation water and protecting crops from droughts

Posted by in categories: chemistry, food

This can make a huge difference in some parts.


Biohydrogel is more than just a water absorption and storage material that helps plants survive drought periods. It also functions as a soil conditioner that traps – and thereby reduces the loss of – agrochemicals like fertilizers, pesticides and herbicides. This means Biohydrogel not only decreases agricultural costs but also helps prevent environmental pollution.

Continue reading “Biohydrogel: Saving irrigation water and protecting crops from droughts” »

Jun 28, 2020

Goldschmidt2020: Abstract Details

Posted by in category: chemistry

Goldschmidt is the foremost annual, international conference on geochemistry and related subjects, organised by the European Association of Geochemistry and the Geochemical Society.

Jun 26, 2020

Quantum computers could arrive sooner if we build them with traditional silicon technology

Posted by in categories: chemistry, nanotechnology, quantum physics, robotics/AI

Quantum computers have the potential to revolutionise the way we solve hard computing problems, from creating advanced artificial intelligence to simulating chemical reactions in order to create the next generation of materials or drugs. But actually building such machines is very difficult because they involve exotic components and have to be kept in highly controlled environments. And the ones we have so far can’t outperform traditional machines as yet.

But with a team of researchers from the UK and France, we have demonstrated that it may well be possible to build a quantum computer from conventional silicon-based electronic components. This could pave the way for large-scale manufacturing of quantum computers much sooner than might otherwise be possible.

Continue reading “Quantum computers could arrive sooner if we build them with traditional silicon technology” »

Page 1 of 5012345678Last