Archive for the ‘chemistry’ category

Apr 15, 2024

On World Parkinson’s Day, a New Theory Emerges on the Disease’s Origins and Spread

Posted by in categories: biotech/medical, chemistry, food, health, neuroscience

A new hypothesis paper appearing in the Journal of Parkinson’s Disease on World Parkinson’s Day unites the brain-and body-first models with some of the likely causes of the disease–environmental toxicants that are either inhaled or ingested.

Pointing to a growing body of research linking environmental exposure to Parkinson’s disease, the authors believe the new models may enable the scientific community to connect specific exposures to specific forms of the disease. This effort will be aided by increasing public awareness of the adverse health effects of many chemicals in our environment. The authors conclude that their hypothesis “may explain many of the mysteries of Parkinson’s disease and open the door toward the ultimate goal–prevention.”

In addition to Parkinson’s, these models of environmental exposure may advance understanding of how toxicants contribute to other brain disorders, including autism in children, ALS in adults, and Alzheimer’s in seniors. Dorsey and his colleagues at the University of Rochester have organized a symposium on the Brain and the Environment in Washington, DC, on May 20 that will examine the role toxicants in our food, water, and air are playing in all these brain diseases.

Continue reading “On World Parkinson’s Day, a New Theory Emerges on the Disease’s Origins and Spread” »

Apr 14, 2024

Semiconductor quantum dots: Technological progress and future challenges

Posted by in categories: chemistry, energy, quantum physics

Quantum #dots feature widely tunable and distinctive optical, electrical, chemical, and physical properties. They span energy #harvesting, #ILLUMINATION, #displays, #cameras, and more.

Read more on #WorldQuantumDay: #Sciencereview.

Semiconductor quantum dots: Technological progress and future challenges.

Apr 14, 2024

MIT researchers reveal incredible method to remove array of harmful pollutants from water: ‘Most technologies focus only on specific molecules’

Posted by in categories: chemistry, engineering

Researchers at the MIT Department of Chemical Engineering have created a new method of cleaning micropollutants from water, using zwitterionic molecules — i.e., molecules with the same number of positive and negative charges.

Devashish Gokhale, a PhD student and one of the researchers, explained zwitterionic molecules by comparing them to magnets.

Continue reading “MIT researchers reveal incredible method to remove array of harmful pollutants from water: ‘Most technologies focus only on specific molecules’” »

Apr 13, 2024

Are Fundamental Constants Fundamental? | Peter Atkins and Jim Baggott

Posted by in categories: business, chemistry, education, particle physics, quantum physics

Peter Atkins discusses the ideas in his book ‘Conjuring the Universe’ with fellow science writer Jim Baggott. They discuss how fundamental the various constants of the universe truly are.

Continue reading “Are Fundamental Constants Fundamental? | Peter Atkins and Jim Baggott” »

Apr 13, 2024

Scientists use novel technique to create new energy-efficient microelectronic device

Posted by in categories: chemistry, neuroscience

“The subvolt regime, which is where this material operates, is of enormous interest to researchers looking to make circuits that act similarly to the human brain, which also operates with great energy efficiency.” — Argonne materials scientist Wei Chen “Redox” refers to a chemical reaction that…

As the integrated circuits that power our electronic devices get more powerful, they are also getting smaller. This trend of microelectronics has only accelerated in recent years as scientists try to fit increasingly more semiconducting components on a chip.

Microelectronics face a key challenge because of their small size. To avoid overheating, microelectronics need to consume only a fraction of the electricity of conventional electronics while still operating at peak performance.

Continue reading “Scientists use novel technique to create new energy-efficient microelectronic device” »

Apr 11, 2024

Novel fabrication technique takes transition metal telluride nanosheets from lab to mass production

Posted by in categories: chemistry, particle physics

But a team of researchers has recently developed a novel —the use of chemical solutions to peel off thin layers from their parent compounds, creating atomically thin sheets—that looks set to deliver on the ultra-thin substance’s promise finally.

The researchers describe their fabrication technique in a study published in Nature.

In the world of ultra-thin or ‘two-dimensional’ materials—those containing just a single layer of atoms—transition metal telluride (TMT) nanosheets have, in recent years, caused great excitement among chemists and materials scientists for their particularly unusual properties.

Apr 10, 2024

Revolutionizing IoT Power: The Pyroelectrochemical Cell Solution

Posted by in categories: chemistry, energy, food, internet, physics

Can you wirelessly power wireless devices, thus improving and advancing the technology known an “Internet of Things” (IoT)? This is what a recent study published in Energy & Environmental Science hopes to address as a team of researchers from the University of Utah investigated how pyroelectrochemical cell (PECs) could be used to self-charge IoT devices through changes in immediate surrounding temperature, also known as ambient temperature. This study holds the potential to help a myriad of industries, including agriculture and machinery, by allowing IoT devices to charge without the need for electrical outlets.

“We’re talking very low levels of energy harvesting, but the ability to have sensors that can be distributed and not need to be recharged in the field is the main advantage,” said Dr. Roseanne Warren, who is an associate professor in the Mechanical Engineering Department at the University of Utah and a co-author on the study. “We explored the basic physics of it and found that it could generate a charge with an increase in temperature or a decrease in temperature.”

Apr 10, 2024

Certain household chemicals could pose a threat to brain health, research suggests

Posted by in categories: biotech/medical, chemistry, health, neuroscience

Cell and animal tests suggest two classes of common chemicals might play a role in neurological disease.

Apr 10, 2024

Masked acid chlorides for proximity labelling of RNA

Posted by in categories: chemistry, mapping

A non-radical proximity labelling platform — BAP-seq — is presented that uses subcellular-localized BS2 esterase to convert unreactive enol-based probes into highly reactive acid chlorides in situ to label nearby RNAs. When paired with click-handle-mediated enrichment and sequencing, this chemistry enables high-resolution spatial mapping of RNAs across subcellular compartments.

Apr 10, 2024

Black Hole Effects on Quantum Information Discovered in Everyday Chemistry

Posted by in categories: chemistry, cosmology, mathematics, particle physics, quantum physics

Nothing makes a mess of quantum physics quite like those space-warping, matter-gulping abominations known as black holes. If you want to turn Schrodinger’s eggs into an information omelet, just find an event horizon and let ‘em drop.

According to theoretical physicists and chemists from Rice University and the University of Illinois Urbana-Champaign in the US, basic chemistry is capable of scrambling quantum information almost as effectively.

The team used a mathematical tool developed more than half a century ago to bridge a gap between known semiclassical physics and quantum effects in superconductivity. They found the delicate quantum states of reacting particles become scrambled with surprising speed and efficiency that comes close to matching the might of a black hole.

Page 1 of 30012345678Last