Toggle light / dark theme

New biodegradable plastic shines in vibrant colors without dyes or pigments

Plastics are one of the largest sources of pollution on Earth, lasting for years on land or in water. But a new type of brilliantly colored cellulose-based plastic detailed in ACS Nano could change that. By adding citric acid and squid ink to a cellulose-based polymer, researchers created a variety of structurally colored plastics that were comparable in strength to traditional plastics, but made from natural biodegradable ingredients and easily recycled using water.

Many plastics are dyed using specialized colorants, which can make these materials hard to recycle using typical processes. Over time, dyes can fade or leach into the environment, posing risks to wildlife. One way to make these colorants largely unnecessary could be a phenomenon called . This occurs when tiny structures in a material reflect certain wavelengths of light rather than a dye or pigment molecule. Structural color gives peacock feathers and butterfly wings their vibrant hues and dazzling shine, but certain display structural color as well.

Hydroxypropyl cellulose (HPC), a derivative of cellulose often used in foods and pharmaceuticals, is one example of a material that can display structural color. In , it shines in iridescent tones, but its have historically made it difficult to form into a solid plastic. Researchers Lei Hou, Peiyi Wu and colleagues wanted to see if they could fine-tune the chemistry of HPC to create vibrant, structurally colored plastics that worked as well as existing petroleum-based plastics and were environmentally friendly.

New method predicts promising 2D materials for next-generation electronics

Finding new materials with useful properties is a primary goal for materials scientists, and it’s central to improving technology. One exciting area of current research is 2D materials—super-thin substances made of just a few layers of atoms, which could power the next generation of electronic devices. In a new study, researchers at the University of Maryland Baltimore County (UMBC) developed a new way to predict 2D materials that might transform electronics. The results were published in Chemistry of Materials on July 7.

Picture a sheet of paper so thin that it’s only a few atoms thick, and that’s what 2D materials are like. One might think they would be fragile—but these materials can actually be incredibly strong or conduct electricity in unique ways. They’re held together by weak forces called van der Waals bonds, which allow materials to slightly deform without breaking under stress. Stacked layers of these 2D materials can slide past each other, further reducing brittleness.

The research team, led by Peng Yan, a UMBC Ph.D. candidate in chemistry, and Joseph Bennett, assistant professor of chemistry and biochemistry at UMBC, focused on a type of 2D material called van der Waals layered phosphochalcogenides. Some of these materials are ferroelectric, meaning they can hold an electric charge in a particular direction, and then the direction can be reversed on command—sort of like tiny, reversible batteries. Some are also magnetic, behaving similarly when a magnetic field is applied. That combination makes them ideal for advanced electronics like memory devices and sensors.

Goodbye plastic? Scientists create new supermaterial that outperforms metals and glass

Scientists at Rice University and University of Houston have developed an innovative, scalable approach to engineer bacterial cellulose into high-strength, multifunctional materials. The study, published in Nature Communications, introduces a dynamic biosynthesis technique that aligns bacterial cellulose fibers in real-time, resulting in robust biopolymer sheets with exceptional mechanical properties.

Plastic pollution persists because traditional synthetic polymers degrade into microplastics, releasing harmful chemicals like bisphenol A (BPA), phthalates and carcinogens. Seeking sustainable alternatives, the research team led by Muhammad Maksud Rahman, assistant professor of mechanical and aerospace engineering at the University of Houston and adjunct assistant professor of materials science and nanoengineering at Rice, leveraged bacterial cellulose — one of Earth’s most abundant and pure biopolymers — as a biodegradable alternative.

Hollow molecules selectively extract cyclohexane for greener hydrocarbon separation

Hollow, pumpkin-shaped molecules can efficiently separate valuable hydrocarbons from crude oil, KAUST researchers have shown. These “molecular sieves,” known as cucurbiturils, could enable a more sustainable approach to producing raw materials for the chemicals industry.

Dopamine Doesn’t Work in Our Brains Quite The Way We Thought

Dopamine is one of the most extensively studied chemical messengers in the human brain, and yet scientists are still figuring out how it works to accomplish so much.

For years, the classic view has been that, when released, dopamine slowly diffuses through the brain like a chemical megaphone, broadcasting information far and wide to numerous target cells.

Recently, however, that perspective has changed. Newer research suggests that dopamine is also capable of short, sharp whispers, precisely directed within milliseconds to neighboring cells.

Cognitive Stimulants: from Caffeine to Cannabinoids — Current and Future Perspectives

Habitual coffee consumers justify their life choices by arguing that they become more alert and increase motor and cognitive performance and efficiency; however, these subjective impressions still do not have a neurobiological correlation. Using functional connectivity approaches to study resting-state fMRI data in a group of habitual coffee drinkers, we herein show that coffee consumption decreased connectivity of the posterior default mode network (DMN) and between the somatosensory/motor networks and the prefrontal cortex, while the connectivity in nodes of the higher visual and the right executive control network (RECN) is increased after drinking coffee; data also show that caffeine intake only replicated the impact of coffee on the posterior DMN, thus disentangling the neurochemical effects of caffeine from the experience of having a coffee.

There is a common expectation, namely among habitual coffee drinkers, that coffee increases alertness and psychomotor functioning. For these reasons, many individuals keep drinking coffee to counteract fatigue, stay alert, increase cognitive performance, and increase work efficiency (Smith, 2002). Coffee beverages are constituted of numerous compounds known to affect human behavior, among which are caffeine and chlorogenic acids (Sadiq Butt et al., 2011). From the neurobiological perspective, both caffeine and chlorogenic acids have well-documented psychoactive actions, whereas caffeine is mostly an antagonist of the main adenosine receptors in the brain—A1 and A2A receptors, leading to the disinhibition of excitatory neurotransmitter release and enhancement of dopamine transmission via D2 receptors (Fredholm et al., 2005) to sharpen brain metabolism and bolster memory performance (Paiva et al.

357 ‒ A new era of longevity science: models of aging, rapamycin trials, biological clocks, & more

Brian Kennedy is a renowned biologist, leader in aging research, & director of the Center for Healthy Longevity at the National University of Singapore. In this episode, Brian shares insights from ongoing human aging studies, including clinical trials of rapamycin & how dosing strategies, timing, & exercise may influence outcomes. He presents two key models of aging—one as a linear accumulation of biological decline & the other as an exponential rise in mortality risk—& explains why traditional models of aging fall short. He also explains why most current aging biomarkers lack clinical utility & describes how his team is working to develop a more actionable biological clock. Additional topics include the potential of compounds like alpha-ketoglutarate, urolithin A, & NAD boosters, along with how lifestyle interventions—such as VO2 max training, strength building, & the use of GLP-1 & SGLT2 drugs—may contribute to longer, healthier lives.

View show notes here: https://bit.ly/44ShpRB
Become a member to receive exclusive content: https://peterattiamd.com/subscribe/
Sign up to receive Peter’s email newsletter: https://peterattiamd.com/newsletter/

0:00:00-Intro.
0:01:15-Brian’s journey from the Buck Institute to Singapore, & the global evolution of aging research.
0:09:12-Rethinking the biology of aging.
0:14:13-How inflammation & mTOR signaling may play a central, causal role in aging.
0:18:00-Biological role of mTOR in aging, & the potential of rapamycin to slow aging & enhance immune resilience.
0:23:32-Aging as a linear decline in resilience overlaid with non-linear health fluctuations.
0:36:03-Speculating on the future of longevity: slowing biological aging through noise reduction & reprogramming.
0:42:18-The role of the epigenome in aging, & the limits of methylation clocks.
0:47:14-Balancing the quest for immortality with the urgent need to improve late-life healthspan.
0:52:16-Comparing the big 4 chronic diseases: which are the most inevitable & modifiable?
0:57:27-Exploring potential benefits of rapamycin: how Brian is testing this & other interventions in humans.
1:09:14-Testing alpha-ketoglutarate (AKG) for healthspan benefits in aging [1:01:45];
1:13:41-Exploring urolithin A’s potential to enhance mitochondrial health, reduce frailty, & slow aging.
1:17:35-Potential of sublingual NAD for longevity.
1:26:50-Other interventions that may promote longevity: spermidine, 17 HRT, & more.
1:34:33-Biological aging clocks, clinical biomarkers, & a new path to proactive longevity care.
1:45:01-Evaluating rapamycin, metformin, & GLP-1s for longevity in healthy individuals.
1:51:19-Why muscle, strength, & fitness are the strongest predictors of healthspan.
1:53:37-Why combining too many longevity interventions may backfire.
1:56:06-How AI integration could accelerate breakthroughs in aging research.
2:02:07-Need to balance innovation with safety in longevity clinics.
2:10:50-Peter’s reflections on emerging interventions & the promise of combining proven aging compounds.

——-
About:

The Peter Attia Drive is a deep-dive podcast focusing on maximizing longevity, & all that goes into that from physical to cognitive to emotional health. With over 90 million episodes downloaded, it features topics including exercise, nutritional biochemistry, cardiovascular disease, Alzheimer’s disease, cancer, mental health, & much more.

Peter Attia is the founder of Early Medical, a medical practice that applies the principles of Medicine 3.0 to patients with the goal of lengthening their lifespan & simultaneously improving their healthspan.