Toggle light / dark theme

Microglia gene activity shifts across Alzheimer’s stages, revealing possible therapy targets

Alzheimer’s disease (AD) is a debilitating neurodegenerative disorder that causes progressive memory loss and a decline in mental (i.e., cognitive) abilities. Statistics suggest that between 500,000 and 900,000 people are diagnosed with this disease every year, while several hundreds of thousands experience dementia or other aging-related cognitive decline.

While there are some available treatments designed to delay cognitive decline in individuals with mild or moderate AD symptoms, a cure for the disease has not yet been identified. A better understanding of the neural, genetic, cellular and that contribute to the disease’s progression, as well as to neurodegeneration in general, could thus be highly valuable, as it could inform the future development of alternative treatments.

Past neuroscience research has identified the key role of microglia in AD. These are specialized that monitor the environment in the brain, clearing out , debris and pathogens. The dysregulation of these cells has been linked to neurodegeneration and to the progression of AD.

Real-time technique directly images material failure in 3D to improve nuclear reactor safety and longevity

MIT researchers have developed a technique that enables real-time, 3D monitoring of corrosion, cracking, and other material failure processes inside a nuclear reactor environment.

This could allow engineers and scientists to design safer nuclear reactors that also deliver higher performance for applications like electricity generation and naval vessel propulsion.

During their experiments, the researchers utilized extremely powerful X-rays to mimic the behavior of neutrons interacting with a material inside a nuclear reactor.

‘Unhappiness hump’ in aging may have disappeared worldwide

A new survey-based study suggests that the “unhappiness hump”—a widely documented rise in worry, stress, and depression with age that peaks in midlife and then declines—may have disappeared, perhaps due to declining mental health among younger people. David Blanchflower of Dartmouth College, U.S., and colleagues present these findings in the open-access journal PLOS One.

Since 2008, a U-shaped trend in well-being with age, in which well-being tends to decline from childhood until around age 50 before rebounding in old age, has been observed in developed and developing countries worldwide. Data have also revealed a corresponding “ill-being” or hump.

Recent data point to a worldwide decline in well-being among younger people, but most studies have not directly addressed potential implications for the unhappiness hump. To help clarify, Blanchflower and colleagues first analyzed data from U.S. and U.K. surveys that included questions about participants’ .

New Graphene Technology Matures Brain Organoids Faster, May Unlock Neurodegenerative Insights

Researchers from University of California San Diego Sanford Stem Cell Institute have developed a novel method to stimulate and mature human brain organoids using graphene, a one-atom-thick sheet of carbon. Published in Nature Communications, the study introduces Graphene-Mediated Optical Stimulation (GraMOS), a safe, non-genetic, biocompatible, non-damaging way to influence neural activity over days to weeks. The approach accelerates brain organoid development — especially important for modeling age-related conditions like Alzheimer’s disease — and even allows them to control robotic devices in real time.

“This is a game-changer for brain research,” said Alysson Muotri, Ph.D., corresponding author, professor of pediatrics, and director of the UC San Diego Sanford Stem Cell Institute Integrated Space Stem Cell Orbital Research Center. “We can now speed up brain organoid maturation without altering their genetic code, opening doors for disease research, brain–machine interfaces and other systems combining living brain cells with technology.”

World’s first spinal cord transplant to take place in Israel, could allow patients to walk again

According to the World Health Organization, over 15 million people worldwide are living with spinal cord injuries, with the majority resulting from traumatic causes such as falls, road traffic accidents, and violence.

Currently, spinal cord injuries cannot be fully cured, so treatment focuses on stabilizing the patient, preventing further damage, and maximizing function. Emergency care often involves immobilizing the spine, reducing inflammation, and sometimes performing surgery to repair fractures or relieve pressure.

Rehabilitation includes physical and occupational therapy, as well as assistive devices like wheelchairs and braces. While experimental therapies—including stem cells and robotic devices—are being explored, no treatment yet reliably restores full spinal cord function.

Spinal cord injuries are one of the few human injuries where the body cannot naturally heal itself, and the tissue is both structurally complex and extremely sensitive.

“The spinal cord transmits electrical signals from the brain to all parts of the body. When it is severed by trauma—such as a car accident, a fall, or a combat injury—the chain is broken. Think of an electrical cable that has been cut: when the two ends no longer touch, the signal cannot pass, and the patient remains paralyzed below the injury,” explained Professor Tal Dvir, head of the Sagol Center for Regenerative Biotechnology and the Nanotechnology Center at Tel Aviv University, who is leading the effort. Dvir is also the chief scientist at Matricelf, the Israeli biotech company commercializing the technology.


Tel Aviv University announced on Wednesday that the surgery will take place in Israel, marking a historic milestone in regenerative medicine.

EV batteries could offer longer lifespan, higher safety with new tech

EV batteries could offer longer lifespan, increased safety with new Swedish tech.


The lifespan of EV batteries has remained a challenging factor for their users. After continuous usage of years, these batteries’ lifespan decreases. But a new experiment offers hope for longer lifespan of EV batteries.

An AI model, developed at Uppsala University, could reportedly offer enhanced safety and longer life of EV batteries. The model provides a much more accurate picture of battery ageing.

Cardiovascular Disease Risk Biomarker Analysis (70+ Tests Since 2005)

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Clearly Filtered Water Filter: https://get.aspr.app/SHoPY

Epigenetic, Telomere Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING

NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/

Hemoglobin’s antioxidant role in brain cells points to new therapeutic avenue

Hemoglobin, long celebrated for ferrying oxygen in red blood cells, has now been revealed to play an overlooked—and potentially game-changing—antioxidant role in the brain.

In such as (ALS), Parkinson’s, Alzheimer’s, and aging, brain cells endure relentless damage from the aberrant (or excessive) (ROS). For decades, scientists have tried to neutralize ROS with antioxidant drugs, but most failed: they couldn’t penetrate the brain effectively, were unstable, or indiscriminately damaged healthy cells.

This new study, led by Director C. Justin Lee of the Center for Cognition and Sociality within the Institute for Basic Science (IBS) in Daejeon, South Korea, set out to identify the brain’s own defenses against a particularly harmful form of ROS—hydrogen peroxide (H2O2). The study has been published in Signal Transduction and Targeted Therapy.

/* */