Toggle light / dark theme

Coupled electrons and phonons may flow like water in 2D semiconductors

A condition long considered to be unfavorable to electrical conduction in semiconductor materials may actually be beneficial in 2D semiconductors, according to new findings by UC Santa Barbara researchers published in the journal Physical Review Letters.

Electron-phonon interactions—collisions between charge-carrying electrons and heat-carrying vibrations in the atomic lattice of the material—are considered the primary cause of electrons slowing down as they travel through semiconductor material. But according to UCSB mechanical engineers Bolin Liao and Yujie Quan, when electrons and phonons are considered as a single system, these interactions in atomically thin material prove to actually conserve total and energy, and could have important implications for 2D semiconductor design.

“This is in sharp contrast to three-dimensional systems where you have a lot of momentum loss processes,” said Liao, who specializes in thermal and energy science.

More pathways that previously thought can lead to optical topological insulators

The candidate pool for engineered materials that can help enable tomorrow’s cutting-edge optical technologies—such as lasers, detectors and imaging devices—is much deeper than previously believed.

That’s according to new research from the University of Michigan that examined a class of materials known as topological insulators. These materials have exciting and tunable properties when it comes to how they transmit energy and information.

“We see this as a step toward building a more versatile and powerful foundation for future photonic technologies,” said Xin Xie, a research fellow in the U-M Department of Physics and lead author of the recent study in the journal Physical Review X.

Sustainable cooling film could slash building energy use by 20% amid rising global temperatures

An international team of scientists has developed a biodegradable material that could slash global energy consumption without using any electricity, according to a new study published today.

The bioplastic metafilm—that can be applied to buildings, equipment and other surfaces—passively cools temperatures by as much as 9.2°C during peak sunlight and reflects almost 99% of the sun’s rays.

Developed by researchers from Zhengzhou University in China and the University of South Australia (UniSA), the new film is a sustainable and long-lasting material that could reduce building energy consumption by up to 20% a year in some of the world’s hottest cities.

Overcoming Long-Held Limitations: Korean Scientists Unveil Next-Generation Energy Storage Technology

Developing next-generation energy storage technologies that can deliver both high power and high capacity at the same time. A research team led by Dr. Bon-Cheol Ku and Dr. Seo Gyun Kim from the Carbon Composite Materials Research Center at the Korea Institute of Science and Technology (KIST), alo

How Thorium Could Power Humanity’s Moon Base

Unlock the future of energy! Discover how abundant thorium and advanced Small Modular Reactors (SMRs) could power our world and humanity’s pioneering Moon base, offering a safer, cleaner path to net-zero.

If you liked this video, please show it to a friend who hasn’t heard of us yet! Also, please leave a comment below. Thanks for watching!

🚀 New mind-blowing episodes every week!

Link to Best Telescopes at the website: https://apollo11space.com/best-telesc… website: https://apollo11space.com 🌠 Join our constellation of curious minds: Facebook: / apollo11space11 Pinterest: / tranquilitybase784 Instagram: / apollo11spacechannel X (Twitter): / apollo11space69 Reddit: / orbitingapollo Copyright Title 17, US Code (Sections 107–118 of the copyright law, Act 1976): This website uses all media for the purpose of review and commentary under the terms of fair use. All footage and images used belong to their respective companies. #thorium #materialscience #space.

My website: https://apollo11space.com.

🌠 Join our constellation of curious minds:

Rewriting a century-old physics law on thermal radiation to unlock the potential of energy, sensing and more

A research team from Penn State has broken a 165-year-old law of thermal radiation with unprecedented strength, setting the stage for more efficient energy harvesting, heat transfer and infrared sensing.

Three-mode smart window cut indoor temperature by 27°C and eliminate urban glare

In the building sector, which accounts for approximately 40% of global energy consumption, heat ingress through windows has been identified as a primary cause of wasted heating and cooling energy.

A KAIST research team has successfully developed a ‘pedestrian-friendly smart window’ technology capable of not only reducing heating and cooling energy in urban buildings but also resolving the persistent issue of ‘’ in urban living.

Professor Hong Chul Moon’s research team at KAIST’s Department of Chemical and Biomolecular Engineering have developed a ‘smart window technology’ that allows users to control the light and entering through windows according to their intent, and effectively neutralize glare from external sources.

A framework for realizing a microscopic, highly precise and energy-efficient quantum clock

Over the past decades, physicists have been trying to develop increasingly sophisticated and precise clocks to reliably measure the duration of physical processes that unfold over very short periods of time, helping to validate various theoretical predictions. These include so-called quantum clocks, timekeeping systems that leverage the principles of quantum mechanics to measure time with extremely high precision.