Toggle light / dark theme

Inexpensive materials transform waste carbon into energy-rich compounds

Turning waste carbon into useful products is a vital part of sustainable manufacturing. Recycling carbon dioxide creates carbon monoxide, which through electricity can be converted into energy-rich compounds. However, existing devices for this process use anion exchange membranes that break down over time when exposed to organic materials, making them less effective.

A team of researchers, led by Feng Jiao, the Lauren and Lee Fixel Distinguished Professor in the McKelvey School of Engineering at Washington University in St. Louis, has found that inexpensive and robust materials, porous separators called diaphragms, can be viable alternatives to these membranes in the conversion process.

After testing various diaphragms, they found that some of them performed as well or better than polymer-based commercial membranes in various operating conditions.

California Needs Supercities—and We Should Build Them Now

My latest, part of my CA Gov run!


These cities could also confront two of California’s biggest crises: homelessness and housing affordability. We could plan from day one for low-income and permanent supportive housing, integrated into neighborhoods rather than hidden on the margins. Additionally, for young people, who have watched the dream of owning a home slip away, these new cities could offer a real future—places where the middle class can afford to live, not just survive.

Supercities would also allow us to build sustainability into the foundation of urban life. Powered by renewable energy, designed around walkability and transit, and filled with parks, green roofs and cutting-edge architecture, they could show the world that growth and environmental responsibility can coexist. California has always been a leader in innovation. Why not apply that same imagination to how we live?

This isn’t fantasy—it’s pragmatism. California’s housing shortage is measured in millions of units. Fixing that within the current system is nearly impossible. Building new cities from scratch is the cleanest, fastest way to meet the scale of the problem. It would put people to work, attract investment and reignite the sense of purpose that once defined this state.

The choice is simple: stagnation or creation. We can let our cities decay under the weight of overregulation and paralysis, or we can build new ones that embody the California ideal of progress. The state that built Silicon Valley, Hollywood and the Golden Gate Bridge shouldn’t be afraid to build again. Supercities aren’t some futuristic fantasy—they’re the bold, realistic solution California needs to revive its economy, house its people and remind the world what ambition looks like.

New Quantum Battery Could Revolutionize Energy Storage

Scientists have designed a topological quantum battery that can charge efficiently without losing energy, using the unique properties of quantum mechanics and topology.

Their research suggests dissipation, long considered harmful, might actually boost power in these next-generation batteries.

Quantum Leap in Energy Storage.

Scientists create new bullet-proof fiber that is stronger and thinner than Kevlar

Kevlar has met its match. For decades, it has been the gold standard for impact protection, from bulletproof vests to armored vehicles, and is still widely used. But scientists have now developed a new composite material that is stronger, tougher and better at stopping bullets than Kevlar even though it is much thinner. Their study is published in the journal Matter.

To stop high-speed impacts, like a bullet, a material needs to resist breaking under force () and be able to absorb a lot of energy without shattering or failing (high toughness). However, there is a problem with current solutions, such as Kevlar, which is made from aramid fibers. When scientists try to make these fibers stronger, they often become more brittle, making it difficult to achieve both simultaneously. This is a common trade-off in materials science when you try to improve a material’s overall performance.

Scientists Develop Floating Device That Harvests Energy From Raindrops

A new water-integrated droplet electricity generator produces high electrical output while floating on water surfaces. Raindrops are not only a source of fresh water, they also carry unused energy that falls naturally from the sky. Scientists have long explored ways to convert this falling water in

Unlocking next-generation battery performance: Fluoride-based solid electrolyte surpasses voltage limits

In a major advancement for energy storage technology, Professor Yoon Seok Jung and his team at Yonsei University reveal a new fluoride-based solid electrolyte that enables all-solid-state batteries (ASSBs) to operate beyond 5 volts safely.

Their paper, published in Nature Energy, addressed a long-standing barrier in battery science, achieving high voltage stability without sacrificing ionic conductivity.

As Prof. Jung explains, “Our fluoride , LiCl–4Li2TiF6, opens a previously forbidden route for high-voltage operation in , marking a true paradigm shift in energy storage design.”

Bridging light, microwaves and electrons for precision calibration

EPFL researchers have developed a method to calibrate electron spectrometers with extreme accuracy by linking microwave, optical, and free-electron frequencies.

Frequency is one of the most precisely measurable quantities in science. Thanks to , tools that generate a series of equally spaced, precise frequencies like the teeth of a ruler, researchers can connect frequencies across the electromagnetic spectrum, from microwaves to optical light, enabling breakthroughs in timekeeping, spectroscopy, and navigation.

Electron energy-loss spectroscopy (EELS) is a powerful tool used to investigate the structure and properties of materials at the atomic level. It works by measuring how electrons lose energy as they pass through a sample. But although EELS provides excellent spatial resolution, its spectral resolution, the ability to measure energy precisely, has lagged behind optical methods.

This Wonder Material Could Revolutionize Renewable Energy

A team of researchers has explored how two-dimensional materials known as MXenes could revolutionize renewable energy and sustainable chemical production. Scientists searching for cleaner and more sustainable technologies are turning their attention to two-dimensional materials that could transfo

More friends, more division: Study finds growing social circles may fuel polarization

Between 2008 and 2010, polarization in society increased dramatically alongside a significant shift in social behavior: the number of close social contacts rose from an average of two to four or five people. The connection between these two developments could provide a fundamental explanation for why societies around the world are increasingly fragmenting into ideological bubbles.

“The big question that not only we, but many countries are currently grappling with, is why polarization has increased so dramatically in recent years,” says Stefan Thurner from the Complexity Science Hub (CSH), explaining the study’s motivation. The research was published in Proceedings of the National Academy of Sciences.

The researchers’ findings confirm that increasing polarization is not merely perceived—it is measurable and objectively occurring. “And this increase happened suddenly, between 2008 and 2010,” says Thurner. The question remained: what caused it?

Imaging technique maps fleeting intermediates in hydrogen electrocatalysis

Electrocatalytic transformations not only require electrical energy—they also need a reliable middleman to spark the desired chemical reaction. Surface metal-hydrogen intermediates can effectively produce value-added chemicals and energy conversion, but, given their low concentration and fleeting lifespan, they are difficult to characterize or study in depth, especially at the nanoscale.

/* */