Toggle light / dark theme

Condensation is critical for applications like power generation, water harvesting, and cooling systems. However, traditional surfaces suffer from a drop in performance under high subcooling, when the surface temperature is much lower than the surrounding vapor. This leads to water flooding and reduced heat transfer.

To tackle this long-standing challenge, researchers at National Taiwan University and National Chung Hsing University have developed a novel three-dimensional (3D) hybrid surface that significantly enhances performance and avoids flooding, even at high subcooling. The paper is published in Small Structures.

The new surface integrates short hydrophobic nanowires and hydrophilic microchannels in a structured pattern. This combination helps guide water droplets efficiently off the surface, preventing the accumulation of water that typically hampers heat transfer.

Superradiant Smith-Purcell radiation (S-SPR) is a kind of free electron radiation with a train of free electron bunches passing over a periodic grating. In theory, the ultra-narrow spectral linewidth of S-SPR could be realized, which would be greatly beneficial to various applications such as imaging, sensing and communication.

However, in the free electron accelerators, customized setups and orotrons, the instability of electron , coulomb effect and the finite number of electron bunches worsened the radiation linewidth, and the large size of equipment limits the application scenarios.

In a new paper published in eLight, a team of scientists, led by Professor Fang Liu and Yidong Huang from the Department of Electronic Engineering, Tsinghua University, China, have developed the first compact S-SPR device with ultra-narrow and continuously tunable spectral linewidth.

Scientists have found a clever way to double the efficiency of thermoelectric materials — those that convert heat into electricity — by mixing two substances with contrasting mechanical properties but similar electronic traits.

The result is a hybrid that blocks heat at microscopic interfaces while allowing electricity to flow freely, bringing us closer to cheaper, more stable alternatives to today’s gold-standard materials used in the Internet of Things and beyond.

Boosting thermoelectrics for the internet of things.

For more than a century, electricity has flowed through wires, powering everything from the smallest gadgets to entire cities. However, what seemed like a distant dream—wireless energy transmission—may soon become a reality. This breakthrough technology, known as “power beaming”, promises to eliminate the need for physical infrastructure, delivering power directly from one point to another using electromagnetic waves.

Innovation in maritime propulsion has reached a significant milestone with the development of a revolutionary technology inspired by one of the ocean’s most elegant creatures. Swiss engineering giant ABB has successfully tested its biomimetic propulsion system that replicates the graceful swimming motion of whales, potentially transforming how vessels navigate our seas.

Biomimetic innovation transforms maritime propulsion

The marine industry stands at the threshold of a major breakthrough with ABB’s latest innovation. The ABB Dynafin propulsion system draws inspiration from the efficient swimming techniques of cetaceans, creating a mechanism that could significantly reduce energy consumption across various vessel types. This technology comes at a crucial time as detailed ocean mapping reveals new underwater features that challenge traditional navigation methods.

Astronomers may have uncovered a hidden population of galaxies that could rewrite what we know about the universe’s evolution.

These faint, dusty galaxies were discovered using the deepest far-infrared image ever created, thanks to data from the Herschel Space Observatory. Their collective light might explain a long-standing mystery about the universe’s energy output in the infrared spectrum. If confirmed, these galaxies would challenge current galaxy evolution models and reveal a previously unseen side of the cosmos—one shrouded in dust and only visible in longer wavelengths of light.

Unveiling hidden galaxies in the early universe.

Generation of hydrogen (H₂) by means of photocatalysis has been at the forefront of research since the 1970s because it can potentially fulfill the demand for this green fuel by employing abundant solar light as the only energy source. It encompasses mainly two approaches: overall water splitting and selective dehydrogenation of organic compounds.

Industrial farming practices often deplete the soil of important nutrients and minerals, leaving farmers to rely on artificial fertilizers to support plant growth. In fact, fertilizer use has more than quadrupled since the 1960s, but this comes with serious consequences. Fertilizer production consumes massive amounts of energy, and its use pollutes the water, air, and land.

Plant biologists at the Salk Institute are proposing a new solution to help kick this unsustainable fertilizer habit.

In a new study, the researchers identified a key molecule produced by plant roots, a small peptide called CLE16, that encourages plants and beneficial soil fungi to interact with each other. They say boosting this symbiotic relationship, in which the fungi provide mineral nutrients to the plants through CLE16 supplementation, could be a more natural and sustainable way to encourage crop growth without the use of harmful artificial fertilizers.

Si-based all-solid-state batteries face application challenges due to the requirement of high external pressure. Here, authors prepare a double-layered Si-based electrode by cold-pressing and electrochemical sintering that enables all-solid-state batteries operating free from external pressure.