Toggle light / dark theme

To unify relativity and quantum mechanics we must abandon materialism

Physicists have so far failed to unify general relativity and quantum mechanics. As attempts to unite them into a quantum theory of gravity mount up, philosopher of physics Dean Rickles argues that the assumption of materialism is the problem. We need to look beyond the physical—beyond space, time and matter—to something primordial out of which minds can construct physical reality, and which explains both general relativity and quantum mechanics. Pioneers like John Wheeler and David Bohm have already begun to chart what such a realm of “pre-physics” might look like—it’s high time physics took their ideas more seriously.

A pair of recent physics Nobel prizes (2020 and 2022) were awarded for basic research in general relativity (Einstein’s theory of gravitation that explains gravity as the curvature of spacetime by matter and energy) and quantum mechanics (our best bet for a theory of matter and energy). The experimental successes of these theories keep piling up. There is clearly much truth in them. They both aim to describe the same world: this world. They should surely overlap, since the matter and energy described by quantum mechanics should curve spacetime as well as good old-fashioned non-quantum mechanical matter and energy. Why then can we not construct a theory in which they both appear? Why is it so difficult to build what would be a Quantum Theory of Gravity?

Redesigned carbon molecules boost battery safety, durability and power

Research published in the Journal of the American Chemical Society demonstrates a new way to make carbon-based battery materials much safer, longer lasting, and more powerful by fundamentally redesigning how fullerene molecules are connected.

Today’s lithium-ion batteries rely mainly on graphite, which limits fast-charging speed and poses safety risks due to lithium plating. These research findings mean progress toward safer electric vehicles, longer-lasting consumer electronics, and more reliable renewable-energy storage.

Why a chiral magnet is a direction-dependent street for electrons

RIKEN physicists have discovered for the first time why the magnitude of the electron flow depends on direction in a special kind of magnet. This finding could help to realize future low-energy devices.

The work is published in the journal Science Advances.

In a normal magnet, all the spins of electrons point in the same direction. In a special class of magnets known as chiral magnets, the electron spins resemble a spiral staircase, having a helical organization.

New reactor produces clean energy and carbon nanotubes from natural gas

Scientists from the University of Cambridge have developed a new reactor that converts natural gas (a common energy source primarily composed of methane) into two highly valuable resources: clean hydrogen fuel and carbon nanotubes, which are ultralight and much stronger than steel.

Hydrogen is a promising green fuel because it burns completely, producing only water vapor and zero carbon dioxide. However, the way we make hydrogen today typically involves using high-pressure steam to break apart gas molecules, which releases significant amounts of CO2 as a byproduct.

To avoid this, the Cambridge team wanted to perfect a technique called methane pyrolysis, which converts methane into hydrogen and solid carbon without producing carbon dioxide. However, until now, no one has been able to perform this process efficiently enough for large-scale use because traditional reactors waste too much gas.

Precessing magnetic jet engine model reveals power source of rare ‘heartbeat’ gamma-ray burst

Prof. An Tao from the Shanghai Astronomical Observatory (SHAO) of the Chinese Academy of Sciences has proposed a novel “precessing magnetic jet engine” model to explain the peculiar gamma-ray burst (GRB) 250702B, a rare cosmic explosion discovered on July 2, 2025.

This GRB exhibited periodic flares approximately every 47 minutes over more than three hours. The new model elucidates the physical origin of this “heartbeat” and resolves the mysteries surrounding its extremely hard spectrum and apparent excess energy. Results were published in The Astrophysical Journal Letters on December 2.

GRB 250702B was detected by high-energy observatories, including the Fermi satellite and Konus-Wind. Its uniqueness lies in its temporal structure. The entire burst lasted approximately 3.2 hours and included three distinct, intense gamma-ray pulses with intervals that were integer multiples of a base period of about 2,825 seconds. Interestingly, approximately one day prior to this event, China’s “Einstein Probe” satellite detected a softer X-ray burst at the same location, acting as a precursor to the main event. This combination of “early warm-up plus hour-scale heartbeat” is extremely rare in GRB observations.

Ultra-low power, fully biodegradable artificial synapse offers record-breaking memory

In Nature Communications, a research team affiliated with UNIST present a fully biodegradable, robust, and energy-efficient artificial synapse that holds great promise for sustainable neuromorphic technologies. Made entirely from eco-friendly materials sourced from nature—such as shells, beans, and plant fibers—this innovation could help address the growing problems of electronic waste and high energy use.

Traditional artificial synapses often struggle with high power consumption and limited lifespan. Led by Professor Hyunhyub Ko from the School of Energy and Chemical Engineering, the team aimed to address these issues by designing a device that mimics the brain’s synapses while being environmentally friendly.

/* */