Research Highlights: In a Phase 1, first-in-human trial, a one-time infusion of an investigational CRISPR-Cas9 therapy targeting angiopoietin-like protein 3 (ANGPTL3) was safe and reduced LDL cholesterol by nearly 50% and reduced triglycerides by…
Of the many trends people chase in biotech, the only one that proves sure and consistent is declining returns. Even after adjusting for inflation, the number of new drugs approved per $1 billion of R&D spending has halved approximately every nine years since 1950. Deloitte’s forecast R&D IRR for the top 20 pharmas fell below the industry’s cost of capital (~7–8%) between 2019 and 2022. In other words, while the industry remained profitable overall, the incremental economics of R&D investment were value-eroding rather than value-creating. So, while other industries have a reason to treat the current market downturn as transient, the business of developing medicine has a more fundamental problem to deal with — it is quite literally shrinking out of existence.
A large-scale laboratory screening of human-made chemicals has identified 168 chemicals that are toxic to bacteria found in the healthy human gut. These chemicals stifle the growth of gut bacteria thought to be vital for health. The research, including the new machine learning model, is published in the journal Nature Microbiology.
Most of these chemicals, likely to enter our bodies through food, water, and environmental exposure, were not previously thought to have any effect on bacteria.
As the bacteria alter their function to try and resist the chemical pollutants, some also become resistant to antibiotics such as ciprofloxacin. If this happens in the human gut, it could make infections harder to treat.
In spaces smaller than a wavelength of light, electric currents jump from point to point and magnetic fields corkscrew through atomic lattices in ways that defy intuition. Scientists have only ever dreamed of observing these marvels directly.
Now Princeton researchers have developed a diamond-based quantum sensor that reveals rich new information about magnetic phenomena at this minute scale. The technique uncovers fluctuations that are beyond the reach of existing instruments and provides key insight into materials such as graphene and superconductors. Superconductors have enabled today’s most advanced medical imaging tools and form the basis of hoped-for technologies like lossless powerlines and levitating trains.
The underlying diamond-based sensing methods have been under development for half a decade. But in a Nov. 27 paper in Nature, the team reported roughly 40 times greater sensitivity than previous techniques.
The same brain cells linked to disorientation in Alzheimer’s disease have been preserved—and even slightly increased—across millions of years of evolution.
A new University of Michigan study suggests these neurons are vital to evolutionary survival. Nature has guarded and amplified them through countless generations, helping mammals instinctively know where they are in their environments. The research is published in The Journal of Neuroscience.
Organic light-emitting diodes (OLEDs) power the high-end screens of our digital world, from TVs and phones to laptops and game consoles.
If those displays could stretch to cover any 3D or irregular surfaces, the doors would be open for technologies like wearable electronics, medical implants and humanoid robots that integrate better with or mimic the soft human body.
“Displays are the intuitive application, but a stretchable OLED can also be used as the light source for monitoring, detection and diagnosis devices for diabetes, cancers, heart conditions and other major health problems,” said Wei Liu, a former postdoctoral researcher in the lab of University of Chicago Pritzker School of Molecular Engineering (UChicago PME) Assoc. Prof. Sihong Wang.
Researchers at the University of Seville have identified the possible origins of structural damage in the brains of patients with schizophrenia spectrum disorders (SSDs). These are regions that show the greatest morphological alterations in the early stages of the disease compared to neurotypical people of the same sex and age. The study also found that people with SSD have significant reductions in structural similarity between different regions of the temporal, cingulate and insular lobes.
The research is published in the journal Nature Communications.
Nerve damage is one of the most common and burdensome complications of diabetes. Millions of patients worldwide suffer from pain, numbness, and restricted movement, largely because damaged nerve fibers do not regenerate sufficiently. The reasons for this are unclear.
A research team led by Professor Dr. Dietmar Fischer, Professor of Pharmacology at the University of Cologne’s Faculty of Medicine, and Director of the Center for Pharmacology at University Hospital Cologne, has now identified a central mechanism that explains limited regeneration in diabetes.
Building on this, the researchers have developed a promising therapeutic approach that can be used to increase regeneration. Their findings were published in the Science Translational Medicine journal under the title “Failure of nerve regeneration in mouse models of diabetes is caused by p35-mediated CDK5 hyperactivity.”
Scientists have discovered living microbes producing methane in the fractured rocks deep inside Sweden’s Siljan impact crater, offering insights into Earth’s earliest life and the search for life beyond our planet.
This breakthrough not only sheds light on one of Earth’s most ancient metabolic processes —methanogenesis—but also strengthens the link between meteorite impact structures and microbial survival in extreme environments. The findings are published in the journal mBio.
Methanogenesis is considered one of the earliest metabolisms on Earth, and its presence in deep subsurface environments has long intrigued scientists. Now, for the first time, active microbial methane production has been confirmed in a terrestrial impact crater. Using cultures enriched from fluids 400 meters below the surface, the team demonstrated methane generation from several carbon sources, including indigenous oil.