Menu

Blog

Archive for the ‘physics’ category

Jul 2, 2020

Researchers observe branched flow of light for the first time

Posted by in categories: engineering, nanotechnology, physics

A team of researchers from the Technion – Israel Institute of Technology has observed branched flow of light for the very first time. The findings are published in Nature and are featured on the cover of the July 2, 2020 issue.

The study was carried out by Ph.D. student Anatoly (Tolik) Patsyk, in collaboration with Miguel A. Bandres, who was a postdoctoral fellow at Technion when the project started and is now an Assistant Professor at CREOL, College of Optics and Photonics, University of Central Florida. The research was led by Technion President Professor Uri Sivan and Distinguished Professor Mordechai (Moti) Segev of the Technion’s Physics and Electrical Engineering Faculties, the Solid State Institute, and the Russell Berrie Nanotechnology Institute.

Continue reading “Researchers observe branched flow of light for the first time” »

Jul 1, 2020

Physicists Have Observed Light Flowing Like a River, And It’s Beautiful

Posted by in category: physics

Picture in your mind the delta of a river — the way the main channel splits into smaller rivulets and tributaries. Something similar occurs in waves as they propagate through a certain kind of medium: the path of the wave splits, breaking up into smaller channels like the branches of a tree.

This is called a branching flow, and it’s been observed in such phenomena as the flow of electrons (electric current), ocean waves, and sound waves. Now, for the first time, physicists have observed it in visible light — and all it took was a laser and a soap bubble.

Continue reading “Physicists Have Observed Light Flowing Like a River, And It’s Beautiful” »

Jun 30, 2020

It happened in just zeptoseconds

Posted by in categories: physics, supercomputing

Australian and US physicists say they have calculated the speed of the most complex nuclear reactions and found that they’re, well, really fast. We’re talking as little as a zeptosecond – a billionth of a trillionth of a second (10-21).

The finding follows a comprehensive project to calculate detailed models of the energy flow during nuclear collisions.

Cedric Simenel from the Australian National University worked with Kyle Godbey and Sait Umar from Vanderbilt University to model 13 different pairs of nuclei, using supercomputers at ANU and in the US.

Jun 28, 2020

Physicists Verify Half-Century-Old Theory about Rotating Black Holes

Posted by in categories: alien life, physics

Physicists from the University of Glasgow and the University of Arizona have experimentally verified a half-century-old theory that began as speculation about how an advanced alien civilization could use a rotating black hole to generate energy.

Jun 28, 2020

Physicists Create New Isotope of Mendelevium

Posted by in category: physics

In an experiment performed at Lawrence Berkeley National Laboratory’s 88-inch cyclotron, a team of physicists successfully created a new isotope of the human-made element mendelevium.

Jun 26, 2020

After 50 Years, Experiment Finally Shows Energy Could Be Extracted From a Black Hole

Posted by in categories: cosmology, physics

A 50-year-old theoretical process for extracting energy from a rotating black hole finally has experimental verification.

Using an analogue of the components required, physicists have shown that the Penrose process is indeed a plausible mechanism to slurp out some of that rotational energy — if we could ever develop the means.

That’s not likely, but the work does show that peculiar theoretical ideas can be brilliantly used to explore the physical properties of some of the most extreme objects in the Universe.

Continue reading “After 50 Years, Experiment Finally Shows Energy Could Be Extracted From a Black Hole” »

Jun 26, 2020

Electricity transmission reaches even higher intensities

Posted by in categories: energy, physics

Intensity is rising at CERN. In the superconducting equipment testing hall, an innovative transmission line has set a new record for the transport of electricity. The link, which is 60 metres long, has transported a total of 54 000 amperes (54 kA, or 27 kA in either direction). “It is the most powerful electrical transmission line built and operated to date!” says Amalia Ballarino, the designer and project leader.

The line has been developed for the High-Luminosity LHC (HL-LHC), the accelerator that will succeed the Large Hadron Collider (LHC) and is scheduled to start up at the end of 2027. Links like this one will connect the HL-LHC’s magnets to the power converters that supply them.

The secret to the new line’s power can be summarised in one word: superconductivity.

Continue reading “Electricity transmission reaches even higher intensities” »

Jun 24, 2020

GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object

Posted by in categories: cosmology, physics

R. Abbott 1, T. D. Abbott 2, S. Abraham 3, F. Acernese 4,5, K. Ackley 6, C. Adams 7, R. X. Adhikari 1, V. B. Adya 8, C. Affeldt 9,10, M. Agathos 11,12, K. Agatsuma13, N. Aggarwal 14, O. D. Aguiar 15, A. Aich 16, L. Aiello 17,18, A. Ain 3, P. Ajith 19, S. Akcay 11,20, G. Allen 21, A. Allocca 22, P. A. Altin 8, A. Amato 23, S. Anand 1, A. Ananyeva 1, S. B. Anderson 1, W. G. Anderson 24, S. V. Angelova 25, S. Ansoldi 26,27, S. Antier 28, S.

Jun 23, 2020

At Long Last: An Answer to the Mystery Surrounding Matter and Antimatter

Posted by in category: physics

An element that could hold the key to the long-standing mystery around why there is much more matter than antimatter in our universe has been discovered in Physics research involving the University of Strathclyde.

The study has discovered that an isotope of the element thorium possesses the most pear-shaped nucleus yet to be discovered.

Nuclei similar to thorium-228 may now be able to be used to perform new tests to try find the answer to the mystery surrounding matter and antimatter.

Continue reading “At Long Last: An Answer to the Mystery Surrounding Matter and Antimatter” »

Jun 23, 2020

A structural light switch for magnetism

Posted by in categories: computing, physics

Magnetic materials have been a mainstay in computing technology due to their ability to permanently store information in their magnetic state. Current technologies are based on ferromagnets, whose states can be flipped readily by magnetic fields. Faster, denser, and more robust next-generation devices would be made possible by using a different class of materials, known as antiferromagnets. Their magnetic state, however, is notoriously difficult to control.

Now, a research team from the MPSD and the University of Oxford has managed to drive a prototypical antiferromagnet into a new magnetic state using terahertz frequency . Their groundbreaking method produced an effect orders of magnitude larger than previously achieved, and on ultrafast time scales. The team’s work has just been published in Nature Physics.

The strength and direction of a magnet’s ‘north pole’ is denoted by its so-called magnetization. In ferromagnets, this easily reversible magnetization can represent a ‘bit’ of information, which has made them the materials of choice for magnet-based technologies. But ferromagnets are slow to operate and react to stray magnetic fields, which means they are prone to errors and cannot be packed very closely together.

Page 1 of 11912345678Last