Toggle light / dark theme

Simultaneous packing structures in superionic water may explain ice giant magnetic fields

Superionic water—the hot, black and strangely conductive form of ice that exists in the center of distant planets—was predicted in the 1980s and first recreated in a laboratory in 2018. With each closer look, it continues to surprise researchers.

In a recent study published in Nature Communications, a team including researchers at the Department of Energy’s SLAC National Accelerator Laboratory has made a surprising discovery: Multiple atomic packing structures can coexist under identical conditions in superionic water.

The electrifying science behind Martian dust

Mars, often depicted as a barren red planet, is far from lifeless. With its thin atmosphere and dusty surface, it is an energetic and electrically charged environment where dust storms and dust devils continually reshape the landscape, creating dynamic processes that have intrigued scientists.

Planetary scientist Alian Wang has been shedding light on Mars’s electrifying dust activities through a series of papers. Her latest research, published in Earth and Planetary Science Letters, explores the isotopic geochemical consequences of these activities.

Astronomers discover a region of space that defies everything we thought we knew

Deep in the early Universe, scientists have identified an extraordinary stellar nursery—a place where stars are forming at a breathtaking rate. In this region, activity is up to 180 times greater than in our own galaxy, offering a rare glimpse into how matter behaves in an environment far denser than anything we experience today.

The Milky Way may feel relatively calm now, but the young Universe was anything but. According to a study published in Monthly Notices of the Royal Astronomical Society, researchers have pinpointed an extremely hot and active zone dating back to the Universe’s earliest epochs, where conditions were far more intense than those around us today.

This area functions as a massive stellar nursery. Packed with dust and gas and flooded with radiation that generates heat, it creates the perfect conditions for particles to collide, stick together, and eventually form new stars.

Making the invisible visible: Space particles become observable through handheld invention

You can’t see, feel, hear, taste or smell them, but tiny particles from space are constantly raining down on us.

They come from cosmic rays—high-energy particles that can originate from exploding stars and other extreme astrophysical events far beyond our solar system. When the rays collide with atoms high in Earth’s protective atmosphere, they trigger a cascade of secondary particles. Among the most important of these new particles are muons, which can pass through the atmosphere and even penetrate into the ground.

An invention by University of Delaware physics professor Spencer Axani called CosmicWatch is putting the science of muons in the palms of experienced scientists and high school students alike.

Plasma rings around M dwarf stars offer new clues to planetary habitability

How does a star affect the makeup of its planets? And what does this mean for the habitability of distant worlds? Carnegie’s Luke Bouma is exploring a new way to probe this critical question—using naturally occurring space weather stations that orbit at least 10% of M dwarf stars during their early lives. He is presenting his work at the 247th American Astronomical Society meeting.

The paper is also published in The Astrophysical Journal Letters.

We know that most M dwarf stars—which are smaller, cooler, and dimmer than our own sun—host at least one Earth-sized rocky planet. Most of them are inhospitable—too hot for liquid water or atmospheres, or hit with frequent stellar flares and intense radiation. But they could still prove to be interesting laboratories for understanding the many ways that stars shape the surroundings in which their planets exist.

Astronomers Witness ‘Missing Link’ in Planet Formation

“What’s so exciting is that we’re seeing a preview of what will become a very normal planetary system,” said Dr. John Livingston.


How are the most common types of planets made? This is what a recent study published in Nature hopes to address as a team of scientists investigated the intricate processes responsible for the most common types of exoplanets—super-Earths and sub-Neptunes—to form and evolve. This study has the potential to help scientists better understand not only planetary formation and evolution, but for solar systems, as our solar system doesn’t have super-Earths or sub-Neptunes.

For the study, the researchers conducted a multi-year examination of the V1298 Tau system, which is an approximately 20-million-year-old system located about 350 light-years from Earth and hosts four growing exoplanets orbiting in a tight formation, and each being between 5 to 10 Earth radii. Given the young age of the system, as our solar system is about 4.5 billion-years-old, the goal of the study was to predict the sizes of the four planets when they stop evolving.

In the end, the researchers ascertained that while the four young planets are between 5–10 Earth radii right now, they will end up being between 1–4.5 Earth radii when they are done forming. They note this is due to the rapid cooling they underwent after initial formation due to their small masses and large radii, resulting in their shrinking while losing their atmospheres, with one of the researchers calling this the “missing link” in understanding the formation of super-Earth and sub-Neptunes, which are the most common types of exoplanets.

Tracking Extreme Solar Activity Across Three Solar Rotations

“When we see a region on the sun with an extremely complex magnetic field, we can assume that there is a large amount of energy there that will have to be released as solar storms,” said Dr. Louise Harra.


How can astronomers observe and study the Sun’s activity in the most efficient way despite the Sun and Earth orbiting each other at different speeds? This is what a recent study published in Astronomy & Astrophysics hopes to address as a team of scientists investigated new methods for studying the Sun with the goal of better understanding its activity and how it influences Earth.

For the study, the researchers collected data from the Sun using NASA’s Solar Dynamics Observatory spacecraft and the European Space Agency’s Solar Orbiter, which orbits the Sun once every six months and is fixed on the nearside of the Sun towards Earth, respectively. The goal of the study was to observe the solar active region called NOAA 13,664, which is one of the most misunderstood and active regions observed over the last 20 years.

During the 94-day study period, lasting from April to June 2024, the researchers successfully observed a full cycle of activity from NOAA 13,664, including an initial 20-day buildup of energy, peaking approximately one month after initiation, followed by a wind-down period lasting approximately two months. These results could help scientists better understand the magnetic field activity of the Sun and predict future solar activity.

Two views of a rogue planet

Simultaneous ground-and space-based observations of a newly discovered free-floating planet have enabled direct measurement of its mass and distance from Earth, according to a new Science study.

The findings offer insights into the diverse and dynamic pathways by which planets can be cast adrift into interstellar space.

Learn more in a new Science Perspective.


A collaboration between ground and space observations unveils a rogue planet.

Gavin A. L. Coleman Authors Info & Affiliations

Science

/* */