Archive for the ‘solar power’ category

Jul 22, 2021

Making clean hydrogen is hard, but researchers just solved a major hurdle

Posted by in categories: chemistry, information science, solar power, sustainability

For decades, researchers around the world have searched for ways to use solar power to generate the key reaction for producing hydrogen as a clean energy source—splitting water molecules to form hydrogen and oxygen. However, such efforts have mostly failed because doing it well was too costly, and trying to do it at a low cost led to poor performance.

Now, researchers from The University of Texas at Austin have found a low-cost way to solve one half of the equation, using sunlight to efficiently split off oxygen molecules from water. The finding, published recently in Nature Communications, represents a step forward toward greater adoption of hydrogen as a key part of our energy infrastructure.

As early as the 1970s, researchers were investigating the possibility of using solar energy to generate hydrogen. But the inability to find materials with the combination of properties needed for a device that can perform the key chemical reactions efficiently has kept it from becoming a mainstream method.

Jul 19, 2021

China unveils design for first waterless nuclear reactor

Posted by in categories: chemistry, engineering, nuclear energy, solar power, space travel, sustainability

CHINA’S NEW THORIUM-BASED NUCLEAR REACTOR is well situated for being adopted for Space applications.

China is slowly but steadily positioning itself to leap ahead of the US Space program. It is doing this without pomp and fanfare, and without the idea of a “space race,” simply based upon what it requires for its future.

1) Recent noteworthy progress on molten salt thorium reactors could be a key component of future Chinese space-worthiness. Originally designed by the USA’s Oak Ridge National Laboratory in the 1960’s, they were planned to be used for nuclear powered strategic bomber planes, before the nuclear submarine concept became adopted as more feasible. They were chosen because they can be miniaturized to the size of an aircraft. By the same token, they could conceivably be used in advanced atmospheric or space propulsion.

Continue reading “China unveils design for first waterless nuclear reactor” »

Jul 17, 2021

Scientists Are Now Transforming Saltwater Into Hydrogen Fuel

Posted by in categories: solar power, sustainability

Circa 2019

Thanks to Stanford researchers, there might be a new recipe for hydrogen fuel: saltwater, electrodes and solar power. The researchers have developed a proof-of-concept for separating hydrogen and oxygen gas from seawater via electricity. It’s far cheaper than the current methods, which rely on creating hydrogen fuel from purified water.

Breaking up a substance like water to create hydrogen and oxygen is called electrolysis and is a scientific technique centuries old. It was first codified by British scientific legend Michael Faraday, whose two laws of electrolysis from 1834 still guide scientists today. With a power source connecting to two water-based electrodes, scientists can get hydrogen bubbles to come out of an end called an cathode, while oxygen comes out of an end called an anode.

Continue reading “Scientists Are Now Transforming Saltwater Into Hydrogen Fuel” »

Jul 13, 2021

How ‘unusable’ capped landfill can gain a second life as a solar farm

Posted by in categories: solar power, sustainability

Landfill, aka garbage dumps or tips, can, under the right conditions, be converted into solar farms once they’re capped.

Jul 11, 2021

This tiny home on wheels is solar powered net-zero solution designed by an actual architect!

Posted by in categories: habitats, solar power, space travel, sustainability

Transportable tiny homes are complex operations, to say the least. Designing them to be sustainable makes building them that much more of an intricate process. First Light Studio, a New Zealand-based architecture group built their own tiny home with help from a local company Build Tiny, Ohariu, checking all of the above boxes. Built to be net-zero through several sustainable features and compact enough to meet all NZTA regulations for mobile homes.

Ohariu was built by First Light Studio and Build Tiny from a client’s brief calling for, “a refined tramping lodge on wheels.” That’s code for hiking, for all us Americans. Since the tiny home would primarily be used for hiking trips and traveling throughout the outdoors, Ohariu was built to be adaptable and versatile above all else. Inside, the living spaces are described by the architects at First Light Studio as being, “more a large and very detailed piece of furniture than a traditional house build, the fit-out [focusing] on the things that are important and necessary.”

Catering to the necessities and casual family pastimes, the tiny home is doused in modular and multifunctional design that’s surrounded by creamy poplar plywood walls and silvery fittings that add a touch of refinement to an otherwise bare interior. Each furniture piece inside Ohariu doubles as storage to maintain an open, clutter-free interior where the tiny home’s family would bond over pastimes like cooking, playing card games, and enjoying the surrounding landscape. Featuring a chef’s kitchen, Ohariu comes with plenty of prep space for cooking and integrates tilt-up tabletops to make even more for when there’s company. Outside, Ohariu is coated in a stealthy ebony corrugate to match its lightweight mobility, supported by aluminum joinery, lights, and utilities that were given the same ebony finish. Ohariu’s roof is asymmetrical with six solar panels lined up on its longer side and a mezzanine bedroom cozying up beneath its sloped short side.

Continue reading “This tiny home on wheels is solar powered net-zero solution designed by an actual architect!” »

Jul 7, 2021

Huge Supply of Water is Saved From Evaporation When Solar Panels Are Built Over Canals

Posted by in categories: solar power, sustainability

UC Santa Cruz is investigating this method as a possible generator of solar energy that would allow for the saving of 63.5 billion gallons of water from evaporation annually, a massive windfall for a state that sometimes rations water and which regularly suffers from droughts.

If mounted above irrigation canals, the shade of solar panels would reduce evaporation by 63 billion gallons, while generating clean energy.

Continue reading “Huge Supply of Water is Saved From Evaporation When Solar Panels Are Built Over Canals” »

Jul 4, 2021

Solar device generates electricity and desalinates water with no waste brine

Posted by in categories: chemistry, climatology, solar power, sustainability

Physics World

A device that can generate electricity while desalinating seawater has been developed by researchers in Saudi Arabia and China, who claim that their new system is highly efficient at performing both tasks. The device uses waste heat from the solar cell for desalination, thereby cooling the solar cell. It also produces no concentrated brine as waste, cutting its potential environmental impact.

In many parts of the world, climate change and population growth are putting huge demands on freshwater supplies. In some coastal regions, desalination – removing the salt from brackish water or seawater to turn it into fresh water – is increasingly being used to meet demand. Indeed, there are now around 16000 desalination plants around the world producing about 95 million cubic metres of freshwater every day.

Continue reading “Solar device generates electricity and desalinates water with no waste brine” »

Jul 2, 2021

New membrane enables us to harvest ‘osmotic’ energy from water

Posted by in categories: solar power, sustainability

The researchers were inspired by bone and cartilage when designing the new membrane.

You’ve likely heard of solar energy, but what is osmotic energy?

Jun 29, 2021

Artificial Photosynthesis Machine Turns Water Into Fuel

Posted by in categories: solar power, sustainability, transportation

Now, researchers are homing in on an artificial photosynthesis device that could let us do the same trick, turning sunlight and water into clean-burning hydrogen fuel for our cars, homes, and more.

Solar cells already let us convert sunlight into electricity. Artificial photosynthesis devices, however, use sunlight to turn water or carbon dioxide into liquid fuels, such as hydrogen or ethanol.

These can be stored more easily than electricity and used in different ways, allowing them to substitute for fossil fuels like oil and gas.

Jun 23, 2021

Growing food with air and solar power: More efficient than planting crops

Posted by in categories: biotech/medical, food, solar power

A team of researchers from the Max Planck Institute of Molecular Plant Physiology, the University of Naples Federico II, the Weizmann Institute of Science and the Porter School of the Environment and Earth Sciences has found that making food from air would be far more efficient than growing crops. In their paper published in Proceedings of the National Academy of Sciences, the group describes their analysis and comparison of the efficiency of growing crops (soybeans) and using a food-from-air technique.

For several years, researchers around the world have been looking into the idea of growing “ from air,” combining a renewable fuel resource with carbon from the air to create food for a type of bacteria that create edible protein. One such project is Solar Foods in Finland, where researchers have the goal of building a demonstration plant by 2023. In this new effort, the researchers sought to compare the efficiency of growing a staple crop, soybeans, with growing food from air.

To make their comparisons, the researchers used a food-from-air system that uses solar energy panels to make electricity, which is combined with from the air to produce food for microbes grown in a bioreactor. The protein the microbes produce is then treated to remove and then dried to produce a powder suitable for consumption by humans and animals.

Page 1 of 7012345678Last