Toggle light / dark theme

An international team of researchers has successfully controlled the flow of energy in a molecule with the help of its pH value. The results of the study, led by Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), could contribute to the development of new sensors for medical diagnostics, for example.

The findings are also of interest for building more efficient solar cells and for use in . The results have been published in the journal Nature Communications.

A process called singlet fission is at the center of the study. In future generations of solar cells, it should improve the utilization of light and thus increase efficiency. Until now, a large proportion of the energy that shines onto solar cells is lost and released as heat.

The present century has witnessed a proactive shift toward more sustainable forms of energy, including renewable resources such as solar power, wind, nuclear energy, and geothermal energy. These technologies naturally require robust energy storage systems for future usage. In recent years, lithium-ion batteries have emerged as dominant energy storage systems. However, they are known to suffer from critical safety issues.

In this regard, zinc-ion batteries based on water-based electrolytes offer a promising solution. They are inherently safe, environmentally friendly, as well as economically viable. These batteries also mitigate fire risks and thermal runaway issues associated with their lithium-based counterparts, which makes them lucrative for grid-scale energy storage.

Furthermore, zinc has high capacity, low cost, ample abundance, and low toxicity. Unfortunately, current collectors utilized in zinc-ion batteries, such as graphite foil, are difficult to scale up and suffer from relatively poor mechanical properties, limiting their industrial use.

Thin film solar cells such as CdTe and CIGSe have gained significant attention due to their low production cost and excellent power conversion efficiencies (PCE). Nevertheless, toxicity and scarcity of constituent elements restrict their widespread usage.

Recently, Cu2SrSnS4 semiconductor has emerged as a potential substitute due to its remarkable absorber characteristics, including non-toxicity, Earth abundance, tunable bandgap, etc. But still, it’s in the emerging stage with a low PCE of 0.6%, revealing that it requires remarkable enhancement to compete with traditional solar cells.

The large open circuit voltage (VOC) loss constricts its performance, which primarily originates from improper band alignment with the transport layers. Discovering the ideal device configuration is the best solution to enhance its PCE.

IN A NUTSHELL 🌞 Sunrun has created the largest virtual power plant in the U.S. by linking 75,000 home batteries. 🌿 The CalReady system provides 375 megawatts of backup power, energizing 280,000 homes, equivalent to all of Ventura County. 💡 This innovative approach helps reduce energy costs and carbon emissions by using 100% solar energy.

Thin film solar cells can be integrated into unexpected surfaces, such as building facades, windows, or the growing floating solar market. Thin film’s flexibility opens doors to new applications and helps overcome some of the barriers that have long limited the adoption of solar energy.

A lot of the interest in thin film solar technologies is coming from one company, based right in the heart of the UK: Power Roll. The County Durham-based firm has spent years exploring how to make thin, flexible solar cells that can be applied almost anywhere and has recently been hitting major milestones in commercialising the technology in an effort to get it out across the world.

Solar Power Portal sat down with Power Roll CEO Neil Spann to explore how thin film solar could deliver the government’s promised “rooftop revolution” and how Power Roll’s unique manufacturing process can make solar power a cheap reality worldwide.

Solar cells based on perovskites, materials with a characteristic crystal structure first unveiled in the mineral calcium titanate (CaTiO3), have emerged as a promising alternative to conventional silicon-based photovoltaics. A key advantage of these materials is that they could yield high power conversion efficiencies (PCEs), yet their production costs could be lower.

Perovskite films can exist in different structural forms, also referred to as phases. One is the so-called α-phase (i.e., a photoactive black phase), which is the most desirable phase for the efficient absorption of light and the transport of charge carriers. The δ-phase, on the other hand, is an intermediate phase characterized by a different atom arrangement and reduced photoactivity.

Researchers at the University of Toledo, Northwestern University, Cornell University and other institutes recently introduced a new strategy to control the crystallization process in -based , stabilizing the δ-phase while facilitating their transition to the α-phase. Their proposed approach, outlined in a paper in Nature Energy, enables the formation of Lewis bases on perovskites on demand to optimize crystallization, which can enhance the efficiency and stability of solar cells.

A collaborative research team from the Hong Kong University of Science and Technology (HKUST) and the Hong Kong Polytechnic University (PolyU) has developed an innovative laminated interface microstructure that enhances the stability and photoelectric conversion efficiency of inverted perovskite solar cells. The research is published in the journal Nature Synthesis.

Perovskite solar cells have considerable potential to replace traditional silicon solar cells in various applications, including grid electricity, portable power sources, and space photovoltaics. This is due to their unique advantages, such as , low cost, and aesthetic appeal.

The basic structures of are classified into two types: standard and inverted. The inverted structure demonstrates better application prospects because the electronic materials used in each layer are more stable compared to those in the standard configuration.

Converting sunlight into electricity is the task of photovoltaic solar cells, but nearly half the light that reaches a flat silicon solar cell surface is lost to reflection. While traditional antireflective coatings help, they only work within a narrow range of light frequency and incidence angles. A new study may have overcome this limit.

As reported in Advanced Photonics Nexus, researchers have proposed a new type of antireflective coating using a single, ultrathin layer of polycrystalline silicon nanostructures (a.k.a. a metasurface). Achieving minimal reflection across certain wavelengths and angles, the metasurface was reportedly developed by combining forward and inverse design techniques, enhanced by (AI).

The result is a coating that sharply reduces reflection across a wide range of wavelengths and angles, setting a new benchmark for performance with minimal material complexity.

Japanese scientists have created all-organic solar cells made of carbon-based materials with a record efficiency of 8.7% for this type of cell.

It is noted that the amount of solar energy that reaches the Earth every day is 10 times higher than all the existing needs of humanity. Over the past 6 years, there has been a rapid development of cells for solar panels. However, there are still a number of challenges to their widespread use, including high production costs, efficiency, and environmental impact.

Silicon is currently the most widely used material in solar cells. However, such cells often also contain potentially hazardous materials that are difficult to dispose of in an environmentally friendly manner.