Toggle light / dark theme

Unlocking defect-free graphene electrodes for transparent electronics

Transparent electrodes transmit light while conducting electricity and are increasingly important in bioelectronic and optoelectronic devices. Their combination of high optical transparency, low electrical resistance, and mechanical flexibility makes them well suited for applications such as displays, solar cells, and wearable or implantable technologies.

In a significant advancement, researchers led by Professor Wonsuk Jung at Chungnam National University in the Republic of Korea have introduced a new fabrication technique called one-step free patterning of graphene, or OFP-G, which enables high-resolution patterning of large-area monolayer graphene with feature sizes smaller than 5 micrometers, without the use of photoresists or chemical etching.

Published Microsystems & Nanoengineering, the method addresses a key limitation of conventional microelectrode fabrication, where lithographic processes often damage graphene and degrade its electrical performance.

MXene nanoscrolls could improve energy storage, biosensors and more

Researchers from Drexel University who discovered a versatile type of two-dimensional conductive nanomaterial called MXene nearly a decade and a half ago, have now reported on a process for producing its one-dimensional cousin: the MXene nanoscroll. The group posits that these materials, which are 100 times thinner than human hair yet more conductive than their two-dimensional counterparts, could be used to improve the performance of energy storage devices, biosensors and wearable technology.

Their finding, published in the journal Advanced Materials, offers a scalable method for producing the nanoscrolls from a MXene precursor with precise control over their shape and chemical structures.

“Two-dimensional morphology is very important in many applications. However, there are applications where 1D morphology is superior,” said Yury Gogotsi, Ph.D., Distinguished University and Bach professor in Drexel’s College of Engineering, who was a corresponding author of the paper.

A new flexible AI chip for smart wearables is thinner than a human hair

The promise of smart wearables is often talked up, and while there have been some impressive innovations, we are still not seeing their full potential. Among the things holding them back is that the chips that operate them are stiff, brittle, and power-hungry. To overcome these problems, researchers from Tsinghua University and Peking University in China have developed FLEXI, a new family of flexible chips. They are thinner than a human hair, flexible enough to be folded thousands of times, and incorporate AI.

A flexible solution

In a paper published in the journal Nature, the team details the design of their chip and how it can handle complex AI tasks, such as processing data from body sensors to identify health indicators, such as irregular heartbeats, in real time.

Shapeshifting materials could power next generation of soft robots

McGill University engineers have developed new ultra-thin materials that can be programmed to move, fold and reshape themselves, much like animated origami. They open the door to softer, safer and more adaptable robots that could be used in medical tools that gently move inside the body, wearable devices that change shape on the skin or smart packaging that reacts to its environment.

The research, jointly led by the laboratories of Hamid Akbarzadeh in the Department of Bioresource Engineering and Marta Cerruti in the Department of Mining and Material Engineering, shows how simple, paper-like sheets made from folded graphene oxide (GO) can be turned into tiny devices that walk, twist, flip and sense their own motion. Two related studies demonstrate how these materials can be made at scale, programmed to change shape and controlled either by humidity or magnetic fields.

The studies are published in Materials Horizons and Advanced Science.

AI model detects prediabetes using ECG data without need for blood tests

DiaCardia, a novel artificial intelligence model that can accurately identify individuals with prediabetes using either 12-lead or single-lead electrocardiogram (ECG) data, has been developed. This breakthrough holds promise for future home-based prediabetes screening using consumer wearable devices, without requiring invasive blood tests.

Type 2 diabetes occurs when the human body either cannot make enough insulin or does not use insulin well, resulting in high blood glucose levels. This condition is a growing global health burden that can reduce the quality of life and life expectancy.

Before type 2 diabetes develops, many people go through a prolonged stage called prediabetes, where blood glucose levels are above normal but not high enough to be diagnosed as diabetes. Prediabetes is an important window wherein lifestyle changes can reduce the progression to diabetes.

Soft, 3D transistors could host living cells for bioelectronics

New research from the WISE group (Wearable, Intelligent, Soft Electronics) at The University of Hong Kong (HKU-WISE) has addressed a long-standing bioelectronic challenge: the development of soft, 3D transistors.

This work introduces a new approach to semiconductor device design with transformative potential for bioelectronics. It is published in Science.

Led by Professor Shiming Zhang from the Department of Electrical and Electronic Engineering, Faculty of Engineering, the research team included senior researchers who joined HKU-WISE from the University of Cambridge and the University of Chicago, together with HKU Ph.D. students and undergraduate participants—an international, inclusive, and dynamic research community.

Shrinking materials hold big potential for smart devices, researchers say

Wearable electronics could be more wearable, according to a research team at Penn State. The researchers have developed a scalable, versatile approach to designing and fabricating wireless, internet-enabled electronic systems that can better adapt to 3D surfaces, like the human body or common household items, paving the path for more precise health monitoring or household automation, such as a smart recliner that can monitor and correct poor sitting habits to improve circulation and prevent long-term problems.

The method, detailed in Science Advances, involves printing liquid metal patterns onto heat-shrinkable polymer substrates—otherwise known as the common childhood craft “Shrinky Dinks.” According to team lead Huanyu “Larry” Cheng, James L. Henderson, Jr. Memorial Associate Professor of Engineering Science and Mechanics in the College of Engineering, the potentially low-cost way to create customizable, shape-conforming electronics that can connect to the internet could make the broad applications of such devices more accessible.

“We see significant potential for this approach in biomedical uses or wearable technologies,” Cheng said, noting that the field is projected to reach $186.14 billion by 2030. “However, one significant barrier for the sector is finding a way to manufacture an easy-to-customize device that can be applied to freestanding, freeform surfaces and communicate wirelessly. Our method solves that.”

/* */