Toggle light / dark theme

Transparent wearable monitor gives real-time warnings about overexposure to sunlight

Scientists in South Korea have unveiled a transparent, wearable sensor that monitors a user’s exposure to ultraviolet A (UVA) radiation in real-time. The technology could help prevent sunburn and long-term skin damage that can cause cancer.

Ultraviolet radiation is released naturally by the sun and artificially by tanning beds. The problem with overexposure is that the rays can penetrate deep into the skin and damage DNA, potentially causing cells to grow out of control and leading to cancer. In many countries, the majority of skin cancer cases are linked to this type of overexposure.

While wearing long clothes and hats and applying sunscreen provides valuable protection, the researchers wanted a simple device to alert wearers when exposure reached a certain level. Current sensors often lack the ability to track UVA and are opaque, which makes them uncomfortable and difficult to use in wearable tech like smart glasses.

Scientists build artificial neurons that work like real ones

There are a wide range of applications for Fu and Yao’s new neuron, from redesigning computers along bio-inspired, and far more efficient principles, to electronic devices that could speak to our bodies directly.

“We currently have all kinds of wearable electronic sensing systems,” says Yao, “but they are comparatively clunky and inefficient. Every time they sense a signal from our body, they have to electrically amplify it so that a computer can analyze it. That intermediate step of amplification increases both power consumption and the circuit’s complexity, but sensors built with our low-voltage neurons could do without any amplification at all.”

The secret ingredient in the team’s new low-powered neuron is a protein nanowire synthesized from the remarkable bacteria Geobacter sulfurreducens, which also has the superpower of producing electricity. Yao, along with various colleagues, have used the bacteria’s protein nanowires to design a whole host of extraordinary efficient devices: a biofilm, powered by sweat, that can power personal electronics; an “electronic nose” that can sniff out disease; and a device, which can be built of nearly anything, that can harvest electricity from thin air itself.

How a fabric patch uses static electricity in your clothes to let you chat with AI and control smart devices

There could soon be a new way to interact with your favorite AI chatbots—through the clothing you wear. An international team of researchers has developed a voice-sensing fabric called A-Textile. This flexible patch of smart material turns everyday garments into a kind of microphone, allowing you to speak commands directly to what you’re wearing. This lets you communicate with AI systems such as ChatGPT or smart home devices.

Wearable devices that sense and interact with the world around us have long been the stuff of science fiction dreams. However, traditional sensors currently in use are often bulky, rigid and uncomfortable. They also lack sensitivity, meaning they struggle to hear soft or normal speaking voices, making it hard for AI to understand commands.

The researchers addressed this issue by exploring triboelectricity, the principle behind static electricity. A-Textile is a multi-layered fabric, and as you move the layers, they rub together to create a tiny electrostatic charge on the fabric. When you speak, the cause the charged layers to vibrate slightly, generating an that represents your voice. To boost the signal, the team embedded flower-shaped nanoparticles into the fabric to help capture the charge and prevent it from dissipating. This ensures it is clear enough to be recognized by AI.

Stretchable waveguides maintain stable transmission even when bent or twisted

Researchers have designed and demonstrated stretchable waveguides that maintain efficient, stable signal transmission of surface plasmon polaritons even when bent, twisted or stretched. These plasmonic waveguides could make it possible to seamlessly embed advanced sensing, communication and health monitoring functions into everyday wearable materials.

Plasmonic waveguides are tiny structures that guide light by coupling it with electrons on a . The new flexible waveguides transmit what are known as spoof surface plasmon polaritons, which are formed with in this case—rather than the conventional infrared or .

“Although our work is still at the research stage, it highlights the exciting possibility of merging advanced electromagnetic technologies with soft, stretchable materials,” said research team leader Zuojia Wang from Zhejiang University. “This brings us closer to a future where advanced health care and connectivity are integrated into what we wear.”

We’re Getting a Clearer Look at the Future of Wearables

In the tech industry’s first telling, the post-smartphone world is a simple question of what and when: glasses? Watches? Pins? Armbands? Implants? It’s portrayed as a simple matter of progress — in consumer technology, things must be replaced by newer and better things — but also as a reaction to the burdens and distractions of the previous great gadget, from which new gadgets will set us free.

A survey of the post-phone landscape as it exists, though, reveals a complication in this consumerist liberation story. Someday, a new gadget may usher us into the post-smartphone world; in the meantime, the industry will have us trying everything else at once: on our faces, in our ears, around our necks, and on our appendages. Our phones — and the always-on, data-and-attention-hungry logic they represent — aren’t being replaced. They’re being extended.

Smart device uses AI and bioelectronics to speed up wound healing process

As a wound heals, it goes through several stages: clotting to stop bleeding, immune system response, scabbing, and scarring. A wearable device called “a-Heal,” designed by engineers at the University of California, Santa Cruz, aims to optimize each stage of the process. The system uses a tiny camera and AI to detect the stage of healing and deliver a treatment in the form of medication or an electric field. The system responds to the unique healing process of the patient, offering personalized treatment.

The portable, wireless device could make wound therapy more accessible to patients in remote areas or with limited mobility. Initial preclinical results, published in the journal npj Biomedical Innovations, show the device successfully speeds up the healing process.

‘Drop-printing’ shows potential for constructing bioelectronic interfaces that conform to complex surfaces

With the rapid development of wearable electronics, neurorehabilitation, and brain-machine interfaces in recent years, there has been an urgent need for methods to conformally wrap thin-film electronic devices onto biological tissues to enable precise acquisition and regulation of physiological signals.

Conventional methods typically rely on external pressure to force devices onto conformal contact. However, when applied to uneven three-dimensional surfaces such as skin, brain, or nerves, they generate significant internal stress which can easily damage fragile metal circuits and inorganic chips. This is an obstacle to the advancement of flexible electronics.

In a study published in Science, Prof. Song Yanlin’s team from the Institute of Chemistry of the Chinese Academy of Sciences, along with collaborators from Beijing Tiantan Hospital, Nanyang Technological University, and Tianjin University, propose a new film transfer strategy named as drop-printing, which has potential applications in bioelectronics, flexible displays, and micro-/nano-manufacturing.

Cotton-based methanol fuel cells could power future flexible electronics

Cotton-based fiber fuel cells can now convert methanol into electricity while sustaining peak power density through 2,000 continuous flex cycles. This breakthrough paves the way for safe, high-performance power sources for flexible electronics and wearable devices.

Researchers at Soochow University developed fiber-shaped direct methanol fuel cells (FDMFCs) using gel-encapsulated woven yarns. These “Yarn@gels” employ an adaptive internal pressure strategy, where the natural swelling of cotton fibers within the gel matrix generates pressure to keep the cell components tightly bound, removing the need for bulky, rigid parts. The result is a fuel cell that is flexible, cuttable, water-resistant, and quick to refuel in just one minute.

The findings of this study are published in Nature Materials.

Project Overview ‹ AlterEgo

AlterEgo is a non-invasive, wearable, peripheral neural interface that allows humans to converse in natural language with machines, artificial intelligence assistants, services, and other people without any voice—without opening their mouth, and without externally observable movements—simply by articulating words internally. The feedback to the user is given through audio, via bone conduction, without disrupting the user’s usual auditory perception, and making the interface closed-loop. This enables a human-computer interaction that is subjectively experienced as completely internal to the human user—like speaking to one’s self.

A primary focus of this project is to help support communication for people with speech disorders including conditions like ALS (amyotrophic lateral sclerosis) and MS (multiple sclerosis). Beyond that, the system has the potential to seamlessly integrate humans and computers—such that computing, the Internet, and AI would weave into our daily life as a “second self” and augment our cognition and abilities.

The wearable system captures peripheral neural signals when internal speech articulators are volitionally and neurologically activated, during a user’s internal articulation of words. This enables a user to transmit and receive streams of information to and from a computing device or any other person without any observable action, in discretion, without unplugging the user from her environment, without invading the user’s privacy.

/* */