Toggle light / dark theme

Quantum encryption method demonstrated at city-sized distances for the first time

Concerns that quantum computers may start easily hacking into previously secure communications has motivated researchers to work on innovative new ways to encrypt information. One such method is quantum key distribution (QKD), a secure, quantum-based method in which eavesdropping attempts disrupt the quantum state, making unauthorized interception immediately detectable.

Previous attempts at this solution were limited by short distances and reliance on special devices, but a research team in China recently demonstrated the ability to maintain quantum encryption over longer distances. The research, published in Science, describes device-independent QKD (DI-QKD) between two single-atom nodes over up to 100 km of optical fiber.

Tuning topological superconductors into existence by adjusting the ratio of two elements

Today’s most powerful computers hit a wall when tackling certain problems, from designing new drugs to cracking encryption codes. Error-free quantum computers promise to overcome those challenges, but building them requires materials with exotic properties of topological superconductors that are incredibly difficult to produce. Now, researchers at the University of Chicago Pritzker School of Molecular Engineering (UChicago PME) and West Virginia University have found a way to tune these materials into existence by simply tweaking a chemical recipe, resulting in a change in many-electron interactions.

The team adjusted the ratio of two elements— tellurium and selenium —that are grown in ultra-thin films. By doing so, they found they could switch the material between different quantum phases, including a highly desirable state called a topological superconductor.

The findings, published in Nature Communications, reveal that as the ratio of tellurium and selenium changes, so too do the correlations between different electrons in the material—how strongly each electron is influenced by those around it. This can serve as a sensitive control knob for engineering exotic quantum phases.

New Amaranth Dragon cyberespionage group exploits WinRAR flaw

A new threat actor called Amaranth Dragon, linked to APT41 state-sponsored Chinese operations, exploited the CVE-2025–8088 vulnerability in WinRAR in espionage attacks on government and law enforcement agencies.

The hackers combined legitimate tools with the custom Amaranth Loader to deliver encrypted payloads from command-and-control (C2) servers behind Cloudflare infrastructure, for more accurate targeting and increased stealth.

According to researchers at cybersecurity company Check Point, Amaranth Dragon targeted organizations in Singapore, Thailand, Indonesia, Cambodia, Laos, and the Philippines.

Microsoft to disable NTLM by default in future Windows releases

Microsoft announced that it will disable the 30-year-old NTLM authentication protocol by default in upcoming Windows releases due to security vulnerabilities that expose organizations to cyberattacks.

NTLM (short for New Technology LAN Manager) is a challenge-response authentication protocol introduced in 1993 with Windows NT 3.1 and is the successor to the LAN Manager (LM) protocol.

Kerberos has superseded NTLM and is now the current default protocol for domain-connected devices running Windows 2000 or later. While it was the default protocol in older Windows versions, NTLM is still used today as a fallback authentication method when Kerberos is unavailable, even though it uses weak cryptography and is vulnerable to attacks.

Microsoft: January update shutdown bug affects more Windows PCs

Microsoft has confirmed that a known issue preventing some Windows 11 devices from shutting down also affects Windows 10 systems with Virtual Secure Mode (VSM) enabled.

VSM is a Windows security feature that creates an isolated, protected memory region separate from the normal operating system (known as the “secure kernel”), using hardware virtualization that is extremely difficult for malware to access, even after a system compromise.

It protects sensitive credentials, encryption keys, and security tokens from kernel-level malware and pass-the-hash attacks, and it enables security features such as Credential Guard, Device Guard, and Hypervisor-Protected Code Integrity in Windows 10/11 Enterprise editions.

Quantis QRNG Chips

Quantum smartphone chip.


IDQ’s QRNG chip is available in six models, depending on size, performance, power consumption and certifications, in order to fit various industry-specific needs. All IDQ QRNG chips have received NIST Entropy Source Validation (ESV) certification on the independently and identically distributed (IID) entropy estimation track SP 800-90B.

ID Quantique is the first company to achieve an ESV certificate with a quantum entropy source and IID estimation track. Such randomness provides the most trusted random keys for encryption. Since October 2022 it has been mandatory for cryptographic modules aiming for FIPS 140–3 certification to have an ESV validated entropy source. This ESV IID Certificate #63 will also facilitate IDQ’s customers who integrate IDQ’s Chips into their own devices to go through the NIST’s Cryptographic Module Validation Program (CMVP).

Introduction: John Martinis

New cadets. New era. Infinite possibilities. Catch a new episode of Star Trek: Starfleet Academy every Thursday starting Jan. 15th on Paramount+.

Can quantum tunneling occur at macroscopic scales? Neil deGrasse Tyson and comedian Chuck Nice sit down with John Martinis, UCSB physicist and 2025 Nobel Prize winner in Physics, to explore superconductivity, quantum tunneling, and what this means for the future of quantum computing.

What exactly is macroscopic quantum tunneling, and why did it take decades for its importance to be recognized? We’ve had electrical circuits forever, so what did Martinis discover that no one else saw? If quantum mechanics usually governs tiny particles, why does a superconducting circuit obey the same rules? And what does superconductivity really mean at a quantum level?

How can a system cross an energy barrier it doesn’t have the energy to overcome? What is actually tunneling in a superconducting wire, and what does it mean to tunnel out of superconductivity? We break down Josephson Junctions, Cooper pairs, and other superconducting lingo. Does tunneling happen instantly, or does it take time? And what does that say about wavefunction collapse and our assumptions about instantaneous quantum effects?

Learn what a qubit is and why macroscopic quantum effects are important for quantum computing. Why don’t quantum computers instantly break all encryption? How close are we to that reality, and what replaces today’s cryptography when it happens? Is quantum supremacy a scientific milestone, a geopolitical signal, or both? Plus, we take cosmic queries from our audience: should quantum computing be regulated like nuclear energy? Will qubits ever be stable enough for everyday use? Will quantum computers live in your pocket or on the dark side of the Moon? Can quantum computing supercharge AI, accelerate discovery, or even simulate reality itself? And finally: if we live in a simulation, would it have to be quantum all the way down?

Thanks to our Patrons Fran Rew, Shawn Martin, Kyland Holmes, Samantha McCarroll-Hyne, camille wilson, Bryan, Sammi, Denis Alberti, Csharp111, stephanie woods, Mark Claassen, Joan Tarshis, Abby Powell, Zachary Koelling, JWC, Reese, Fran Ochoa, Bert Berrevoets, Barely A Float Farm, Vasant Shankarling, Michael Rodriguez, DiDTim, Ian Cochrane, Brendan, William Heissenberg Ⅲ, Carl Poole, Ryan McGee, Sean Fullard, Our Story Series, dennis van halderen, Ann Svenson, mi ti, Lawrence Cottone, 123, Patrick Avelino, Daniel Arvay, Bert ten Kate, Kristian Rahbek, Robert Wade, Raul Contreras, Thomas Pring, John, S S, SKiTz0721, Joey, Merhawi Gherezghier, Curtis Lee Zeitelhack, Linda Morris, Samantha Conte, Troy Nethery, Russ Hill, Kathy Woida, Milimber, Nathan Craver, Taylor Anderson, Deland Steedman, Emily Lennox, Daniel Lopez,., DanPeth, Gary, Tony Springer, Kathryn Rhind, jMartin, Isabella Troy Brazoban, Kevin Hobstetter, Linda Pepper, 1701cara, Isaac H, Jonathan Morton, JP, טל אחיטוב Tal Achituv, J. Andrew Medina, Erin Wasser, Evelina Airapetova, Salim Taleb, Logan Sinnett, Catherine Omeara, Andrew Shaw, Lee Senseman, Peter Mattingly, Nick Nordberg, Sam Giffin, LOWERCASEGUY, JoricGaming, Jeffrey Botkin, Ronald Hutchison, and suzie2shoez for supporting us this week.

AI to predict the risk of cancer metastases

Metastasis remains the leading cause of death in most cancers, particularly colon, breast and lung cancer. Currently, the first detectable sign of the metastatic process is the presence of circulating tumor cells in the blood or in the lymphatic system. By then, it is already too late to prevent their spread. Furthermore, while the mutations that lead to the formation of the original tumors are well understood, no single genetic alteration can explain why, in general, some cells migrate and others do not.

“The difficulty lies in being able to determine the complete molecular identity of a cell – an analysis that destroys it – while observing its function, which requires it to remain alive,” explains the senior author. “To this end, we isolated, cloned and cultured tumor cells,” adds a co-first author of the study. “These clones were then evaluated in vitro and in a mouse model to observe their ability to migrate through a real biological filter and generate metastases.”

The analysis of the expression of several hundred genes, carried out on about thirty clones from two primary colon tumors, identified gene expression gradients closely linked to their migratory potential. In this context, accurate assessment of metastatic potential does not depend on the profile of a single cell, but on the sum of interactions between related cancer cells that form a group.

The gene expression signatures obtained were integrated into an artificial intelligence model developed by the team. “The great novelty of our tool, called ‘Mangrove Gene Signatures (MangroveGS)’, is that it exploits dozens, even hundreds, of gene signatures. This makes it particularly resistant to individual variations,” explains another co-first author of the study. After training, the model achieved an accuracy of nearly 80% in predicting the occurrence of metastases and recurrence of colon cancer, a result far superior to existing tools. In addition, signatures derived from colon cancer can also predict the metastatic potential of other cancers, such as stomach, lung and breast cancer.

After training, the model achieved an accuracy of nearly 80% in predicting the occurrence of metastases and recurrence of colon cancer, a result far superior to existing tools. In addition, signatures derived from colon cancer can also predict the metastatic potential of other cancers, such as stomach, lung and breast cancer.

Thanks to MangroveGS, tumor samples are sufficient: cells can be analysed and their RNA sequenced at the hospital, then the metastatic risk score quickly transmitted to oncologists and patients via an encrypted Mangrove portal that has analysed the anonymised data.

“This information will prevent the overtreatment of low-risk patients, thereby limiting side effects and unnecessary costs, while intensifying the monitoring and treatment of those at high risk,” adds the senior author. “It also offers the possibility of optimising the selection of participants in clinical trials, reducing the number of volunteers required, increasing the statistical power of studies, and providing therapeutic benefits to the patients who need it most.” ScienceMission sciencenewshighlights.

The Computational Unconscious: How Information Theory Reframes Psychoanalytic Depth

Read “” by Myk Eff on Medium.


When Freud first mapped the territories of the unconscious, he could only speak in the metaphors available to him — hydraulic pressures, economic systems, topographical layers. Yet the phenomena he described possess a striking affinity with concepts that would not emerge until decades later, when Claude Shannon formalized information theory and computing science revealed the architecture of data itself. What if the mechanisms Freud, Jung, and their successors laboriously documented are, at their foundation, information processing operations? What if repression is encryption, condensation is compression, and the deepest strata of the psyche represent not mystical depths but maximal data density?

The proposition is not merely metaphorical. Consider Freud’s description of repression in Repression (1915): the mechanism whereby the ego refuses admittance to consciousness of ideational content that threatens its equilibrium. Freud wrote that repression lies simply in turning something away, and keeping it at a distance, from the conscious (p. 147). Yet this keeping at a distance operates through a curious transformation. The repressed content does not vanish; it persists, inaccessible yet influential, distorting thought and behavior through its very concealment.

This is precisely analogous to encrypted data. Encryption transforms information into a form that resists interpretation without the proper key, yet the information remains fully present, its structure intact but rendered opaque. The encrypted file occupies space, exerts influence on system resources, and can corrupt or destabilize processes that attempt to access it incorrectly. Similarly, repressed material occupies psychic space and generates symptoms — failed decryption attempts, as it were — when consciousness approaches without the therapeutic key.

Scientists Uncover Hidden Weakness in Quantum Encryption

Quantum key distribution (QKD) is a next generation method for protecting digital communications by drawing on the fundamental behavior of quantum particles. Instead of relying on mathematical complexity alone, QKD allows two users to establish a shared secret key in a way that is inherently resistant to interception, even if the communication channel itself is not private.

When an unauthorized observer attempts to extract information, the quantum states carrying the data are unavoidably altered, creating telltale disturbances that signal a potential security breach.

The real-world performance of QKD systems, however, depends on precise control of the physical link between sender and receiver. One of the most influential factors is pointing error, which occurs when the transmitted beam does not perfectly align with the receiving device.

/* */