Toggle light / dark theme

Optical fibers are fundamental components in modern science and technology due to their inherent advantages, providing an efficient and secure medium for applications such as internet communication and big data transmission. Compared with single-mode fibers (SMFs), multimode fibers (MMFs) can support a much larger number of guided modes (~103 to ~104), offering the attractive advantage of high-capacity information and image transportation within the diameter of a hair. This capability has positioned MMFs as a critical tool in fields such as quantum information and micro-endoscopy.

However, MMFs pose a significant challenge: their highly scattering nature introduces severe modal dispersion during transmission, which significantly degrades the quality of transmitted information. Existing technologies, such as (ANNs) and spatial light modulators (SLMs), have achieved limited success in reconstructing distorted images after MMF transmission. Despite these advancements, the direct optical transmission of undistorted images through MMFs using micron-scale integrated has remained an elusive goal in optical research.

Addressing the longstanding challenges of multi-mode fiber (MMF) transmission, the research team led by Prof. Qiming Zhang and Associate Prof. Haoyi Yu from the School of Artificial Intelligence Science and Technology (SAIST) at the University of Shanghai for Science and Technology (USST) has introduced a groundbreaking solution. The study is published in the journal Nature Photonics.

The aim of the following paper was to overview the body-composition-related changes and molecular effects of different chemotherapy agents used in cancer treatment on skeletal-muscle remodeling.

— Pedrosa, et al.

Full text is available


Paraneoplastic conditions such as cancer cachexia are often exacerbated by chemotherapy, which affects the patient’s quality of life as well as the response to therapy. The aim of this narrative review was to overview the body-composition-related changes and molecular effects of different chemotherapy agents used in cancer treatment on skeletal-muscle remodeling. A literature search was performed using the Web of Science, Scopus, and Science Direct databases and a total of 77 papers was retrieved. In general, the literature survey showed that the molecular changes induced by chemotherapy in skeletal muscle have been studied mainly in animal models and mostly in non-tumor-bearing rodents, whereas clinical studies have essentially assessed changes in body composition by computerized tomography.

In the incident analyzed by the Canadian cybersecurity company, the initial access was gained to a targeted endpoint via a vulnerable SimpleHelp RMM instance (“194.76.227[.]171”) located in Estonia.

Upon establishing a remote connection, the threat actor has been observed performing a series of post-exploitation actions, including reconnaissance and discovery operations, as well as creating an administrator account named “sqladmin” to facilitate the deployment of the open-source Sliver framework.

The persistence offered by Sliver was subsequently abused to move laterally across the network, establishing a connection between the domain controller (DC) and the vulnerable SimpleHelp RMM client and ultimately installing a Cloudflare tunnel to stealthily route traffic to servers under the attacker’s control through the web infrastructure company’s infrastructure.

A 7-Zip vulnerability allowing attackers to bypass the Mark of the Web (MotW) Windows security feature was exploited by Russian hackers as a zero-day since September 2024.

According to Trend Micro researchers, the flaw was used in SmokeLoader malware campaigns targeting the Ukrainian government and private organizations in the country.

The Mark of the Web is a Windows security feature designed to warn users that the file they’re about to execute comes from untrusted sources, requesting a confirmation step via an additional prompt. Bypassing MoTW allows malicious files to run on the victim’s machine without a warning.

In today’s AI news, Google launched its much-anticipated new flagship AI model, Gemini 2.0 Pro Experimental, on Wednesday. The announcement was part of a series of other AI model releases. The company is also making its reasoning model, Gemini 2.0 Flash Thinking, available in the Gemini app.

In other advancements, LinkedIn is testing a new job-hunting tool that uses a custom large language model to comb through huge quantities of data to help people find prospective roles. The company believes that artificial intelligence will help users unearth new roles they might have missed in the typical search process.

S Deep Research feature, which can autonomously browse the web and create research reports. ‘ + s up from hitting $50 million ARR, or the yearly value of last month s case for why they are the best positioned to take over TikTok And, in this episode, a16z Partner Marc Andrusko chats with Mastercard’s Chief AI and Data Officer Greg Ulrich about Mastercard’s long history of using AI, the opportunities (and potential risks) associated with integrating generative AI into fraud detection, determining what tech to employ based on use cases, and the best advice he’s ever gotten.

Then, power your AI transformation with an insightful keynote from Scott Guthrie, Executive Vice President, Cloud + AI Group at Microsoft, and other industry experts. Watch this keynote presentation from NYC stop on Microsoft’s AI Tour.

We close out with this insightful discussion with Malcolm Gladwell and Ric Lewis, SVP of Infrastructure at IBM. Learn how hardware capabilities enable the matrix math behind large language models and how AI is transforming industries—from banking to your local coffee shop.

The concept of computational consciousness and its potential impact on humanity is a topic of ongoing debate and speculation. While Artificial Intelligence (AI) has made significant advancements in recent years, we have not yet achieved a true computational consciousness capable of replicating the complexities of the human mind.

AI technologies are becoming increasingly sophisticated, performing tasks that were once exclusive to human intelligence. However, fundamental differences remain between AI and human consciousness. Human cognition is not purely computational; it encompasses emotions, subjective experiences, self-awareness, and other dimensions that machines have yet to replicate.

The rise of advanced AI systems will undoubtedly transform society, reshaping how we work, communicate, and interact with the digital world. AI enhances human capabilities, offering powerful tools for solving complex problems across diverse fields, from scientific research to healthcare. However, the ethical implications and potential risks associated with AI development must be carefully considered. Responsible AI deployment, emphasizing fairness, transparency, and accountability, is crucial.

In this evolving landscape, ETER9 introduces an avant-garde and experimental approach to AI-driven social networking. It redefines digital presence by allowing users to engage with AI entities known as ‘noids’ — autonomous digital counterparts designed to extend human presence beyond time and availability. Unlike traditional virtual assistants, noids act as independent extensions of their users, continuously learning from interactions to replicate communication styles and behaviors. These AI-driven entities engage with others, generate content, and maintain a user’s online presence, ensuring a persistent digital identity.

ETER9’s noids are not passive simulations; they dynamically evolve, fostering meaningful interactions and expanding the boundaries of virtual existence. Through advanced machine learning algorithms, they analyze user input, adapt to personal preferences, and refine their responses over time, creating an AI representation that closely mirrors its human counterpart. This unique integration of AI and social networking enables users to sustain an active online presence, even when they are not physically engaged.

The advent of autonomous digital counterparts in platforms like ETER9 raises profound questions about identity and authenticity in the digital age. While noids do not possess true consciousness, they provide a novel way for individuals to explore their own thoughts, behaviors, and social interactions. Acting as digital mirrors, they offer insights that encourage self-reflection and deeper understanding of one’s digital footprint.

As this frontier advances, it is essential to approach the development and interaction with digital counterparts thoughtfully. Issues such as privacy, data security, and ethical AI usage must be at the forefront. ETER9 is committed to ensuring user privacy and maintaining high ethical standards in the creation and functionality of its noids.

ETER9’s vision represents a paradigm shift in human-AI relationships. By bridging the gap between physical and virtual existence, it provides new avenues for creativity, collaboration, and self-expression. As we continue to explore the potential of AI-driven digital counterparts, it is crucial to embrace these innovations with mindful intent, recognizing that while AI can enhance and extend our digital presence, it is our humanity that remains the core of our existence.

As ETER9 pushes the boundaries of AI and virtual presence, one question lingers:

— Could these autonomous digital counterparts unlock deeper insights into human consciousness and the nature of our identity in the digital era?

© 2025 __Ӈ__

Early detection of earthquakes could be vastly improved by tapping into the world’s internet network with a groundbreaking new algorithm, researchers say.

Fiber used for cable television, telephone systems and the global web matrix now have the potential to help measure seismic rumblings thanks to recent technological advances, but harnessing this breakthrough has proved problematic.

A new paper published today in Geophysical Journal International seeks to address these challenges by adapting a simple physics-based algorithm to include fiber optic data that can then be used hand-in-hand with traditional seismometer measurements.

Netgear has fixed two critical vulnerabilities affecting multiple WiFi router models and urged customers to update their devices to the latest firmware as soon as possible.

The security flaws impact multiple WiFi 6 access points (WAX206, WAX214v2, and WAX220) and Nighthawk Pro Gaming router models (XR1000, XR1000v2, XR500).

Although the American computer networking company did not disclose more details about the two bugs, it did reveal that unauthenticated threat actors can exploit them for remote code execution (tracked internally as PSV-2023–0039) and authentication bypass (PSV-2021–0117) in low-complexity attacks that don’t require user interaction.

When people think about fiber optic cables, it’s usually about how they’re used for telecommunications and accessing the internet. But fiber optic cables—strands of glass or plastic that allow for the transmission of light—can be used for another purpose: imaging the ground beneath our feet.

MIT Department of Earth, Atmospheric and Planetary Sciences (EAPS) Ph.D. student Hilary Chang recently used the MIT fiber optic cable network to successfully image the ground underneath campus using a method known as distributed acoustic sensing (DAS). By using existing infrastructure, DAS can be an efficient and effective way to understand ground composition, a critical component for assessing the seismic hazard of areas, or how at risk they are from earthquake damage.

“We were able to extract very nice, coherent waves from the surroundings, and then use that to get some information about the subsurface,” says Chang, the lead author of a recent paper describing her work that was co-authored with EAPS Principal Research Scientist Nori Nakata. The study is published in The Leading Edge journal.