Elon Musk confirmed that Tesla currently has a Powerwall backlog of 80000 orders, which is worth over $500 million, but it can’t ramp up production to meet that due to the global chip shortage.
Tesla has been production constrained with the Powerwall for a long time.
The demand has been strong in several markets, like the US and Australia, but production hasn’t been to catch up despite significant ramp-ups.
We hear about EV battery breakthroughs all the time, but they don’t seem to pan out. Perhaps Tesla’s new lithium extraction method will be the exception.
Jacopo Buongiorno and others say factory-built microreactors trucked to usage sites could be a safe, efficient option for decarbonizing electricity systems.
We may be on the brink of a new paradigm for nuclear power, a group of nuclear specialists suggested recently in The Bridge, the journal of the National Academy of Engineering. Much as large, expensive, and centralized computers gave way to the widely distributed PCs of today, a new generation of relatively tiny and inexpensive factory-built reactors, designed for autonomous plug-and-play operation similar to plugging in an oversized battery, is on the horizon, they say.
These proposed systems could provide heat for industrial processes or electricity for a military base or a neighborhood, run unattended for five to 10 years, and then be trucked back to the factory for refurbishment. The authors — Jacopo Buongiorno, MIT’s TEPCO Professor of Nuclear Science and Engineering; Robert Frida, a founder of GenH; Steven Aumeier of the Idaho National Laboratory; and Kevin Chilton, retired commander of the U.S. Strategic Command — have dubbed these small power plants “nuclear batteries.” Because of their simplicity of operation, they could play a significant role in decarbonizing the world’s electricity systems to avert catastrophic climate change, the researchers say. MIT News asked Buongiorno to describe his group’s proposal.
This article is an excerpt from a report by Partners in Foresight, The Home of the 2020s: Scenarios for How We Might Live in the Post-Pandemic Future.
The homes we inhabit in the 2020s could serve as a personal headquarters for building the good society. How can a house help create a more positive future? Here are four ways the home of the future might support meaningful personal commitment to the greater good.
1. Advocate From Home (AFH)
During the pandemic lockdown period, a new wave of civic engagement has taken hold. A trend called Advocate From Home (AFH) takes the form of digital organizing (e-mail, text banking, content production) for political, ecological, social and economic justice, often using work-from-home tools.
2. Decentralized Energy
Households are embracing renewables in terms of solar energy and decentralized systems with independent home batteries. There are revolutions happening in the world of clean kinetic energy that could transform our spaces by allowing objects to collect and then transmit power. Future homes may be self-sustaining in terms of power and energy needs.
3. Biophilia
One way people express environmentalist values at home is through a love of nature. Outdoors, there are green options for the visionary homeowner, such as garden plots, low-intensive watering solutions, use of native plants and compost bins. Inside the home, people are gravitating to hydroponically grown vegetables and herbs. Indoor plants of all kinds are at the height of interior design trends and architecture is looking to biomimicry for sustainable ideas. Pets outnumber children in US homes.
Solar and wind power have proven themselves to be cost competitive, but energy storage is key. What if I told you that molten metal might make a better battery? Lower cost, simpler assembly, zero maintenance, and a longer lifetime than lithium-ion. Let’s take a closer look at liquid metal battery technology.
A serving of mushrooms is just 0.08 kg of CO2 emissions—only lentils have a lower per serving CO2 emission level.
One common question J.P. and I get over and over again is about the problem of overpopulation—if human life extension is a humanitarian goal worth pursuing, won’t there be an inevitable environmental crisis? One worse than what we’re already facing?
When we covered the ethics of life extension we partially answered this question based on what we know about population and consumption trends now (tl;dr: we’re more likely to face a crisis of under population than overpopulation). That said, it’s practically impossible to be able to fully forecast environmental trends 50200, and further years into the future. We noted, “Spanners actually need to address it because we will have to continue living through the consequences of climate change if we don’t.”
Most plastic persists in the environment. A recently developed polymer degrades in a week and doesn’t leave microplastics behind. Image credit: Larina Marina/ Shutterstock.
Plastic trash chokes shorelines and oceans, in part because plastic polymers do not easily decompose. But a new kind of environmentally degradable plastic could help change that: It breaks down in about a week in sunlight and air, according to a recent study in the Journal of the American Chemical Society (JACS). Chemical characterization using nuclear magnetic resonance (NMR) and mass spectroscopy, among other techniques, revealed that the plastic decomposed rapidly in sunlight from a petroleum-based polymer into succinic acid, a naturally occurring nontoxic small molecule that doesn’t leave microplastic fragments in the environment.
Although a sun-sensitive plastic might not be a good choice for bottles or bags that need to last more than a week on shelves, integrating the environmentally degradable polymer as a minor ingredient, or with other biodegradable polymers, could help speed breakdown of these materials in landfills, says coauthor Liang Luo, an organic materials scientist at Huazhong University of Science and Technology in Wuhan, China. The flexible and degradable material would be potentially useful inside electronics, he says. Sealed inside a cell phone or other flexible electronic device, the polymer could last for years isolated from light and oxygen, Luo notes, while making smartphones easier to dispose of at the end of their service life. And the byproduct succinic acid could be upcycled for commercial uses in the pharmaceutical and food industries, Luo adds.