Toggle light / dark theme

Distillation of water using solar energy is considered one of the most popular desalination methods today.

Power engineers at Ural Federal University (UrFU), together with colleagues from Iraq, have developed a new desalination technology, which is claimed to be much more effective than others, by incorporating a rotating cylinder. The method proposed by the UrFU power engineers will significantly reduce the cost of desalination and will increase production volumes by four times.

The experimental new solar distiller incorporates a rectangular basin, inside of which is a horizontally oriented black steel cylinder. The basin is filled with undrinkable water, and the cylinder is slowly rotated by a solar-powered DC motor.

The Australian company LAVO has developed a hydrogen storage system for domestic solar systems. It is the world’s first integrated hybrid hydrogen battery that combines with rooftop solar to deliver sustainable, reliable, and renewable green energy to your home and business. Developed in partnership with UNSW, Sydney, Australia, and Design + Industry, the Hydrogen Battery System from LAVO consists of an electrolysis system, hydrogen storage array, and fuel cell power system rolled into one attractive cabinet. When the electricity from the solar system on the roof is not needed, it is stored in the form of hydrogen. This then serves as fuel for the fuel cell when the solar system is not supplying electricity.


However, LAVO’s hydrogen hybrid battery delivers a continuous output of 5 kW and stores over 40kWh of electricity – enough to power the average Australian home for two days on a single charge. The system is designed to easily integrate with existing solar panels, creating a significant opportunity for LAVO to have an immediate and notable impact. There are Wi-Fi connectivity and a phone app for monitoring and control, and businesses with higher power needs can run several in parallel to form an intelligent virtual power plant.

Hydrogen is often incorrectly seen as an unsafe fuel, usually due to the 1937 Hindenburg disaster. However, the company says any leaks will disperse quickly, though, making it inherently no more dangerous than other conventional fuels such as gasoline or natural gas. This innovation has a lifespan of approximately 30 years, which is three times longer than that of lithium batteries, thanks to its reliance on hydrogen gas rather than the chemicals in a conventional battery.

According to the manufacturer, LAVO’s hydrogen storage should be ready for installation by the middle of this year. It costs AU$34750 (US$26900) for the first 2500 units and will require a fully refundable deposit to secure your LAVO pre-order. In the coming year, the price is expected to drop to AU$29450 (US$22800).

ABB said Thursday it would deliver an integrated electric propulsion system and vessel control technology for Crowley’s pioneering eWolf tug, built for sustainable and safe operations at the Port of San Diego.

Upon delivery by Alabama-based shipbuilder Master Boat Builders, Inc. (MBB) in mid-2023, Crowley Maritime Corporation’s new 82-foot (25-meter) vessel will support ship arrivals and departures at the Port of San Diego in California.

It will be the first all-electric, battery-powered harbor tug ever built and operated in the United States and only the third of its kind to enter operations worldwide, ABB said.

What i would suggest is landing Atlas robots in waves on the Moon, the first wave builds a solar panel farm for power, the second repairs the first wave, the third joins the first two to begin building large scale runways, the fourth joins the first three to begin building permanent structures.

The Moon is close enough for teleoperations, and in the 2030s, when we actually do Mars, the AI could repeat the whole thing there.


Before they explore Mars, the robots explore Martian-like caves on Earth first.

Elon Musk recently hinted at a very welcome and simple update for Tesla’s vehicles, especially those which have already replaced their 12-volt batteries in the past. According to the CEO, Tesla would be looking into the idea of equipping older vehicles with a 12-volt lithium-ion battery, similar to the Model S Plaid.

Musk’s update came as a response to Tesla owner Rich Teer, who inquired if it was possible to have the company’s older vehicles be equipped with the company’s newer 12-volt lithium-ion battery. This was a good point considering that the conventional 12-volt lead-acid battery used in vehicles like the Model 3 and Model Y tend to get discharged, in some cases, multiple times per year.

In his response, Musk stated that Tesla would try to roll out such an initiative, especially as it would be beneficial for the company’s cars. A 12-volt lithium-ion battery would last far longer than a conventional lead-acid battery, after all, and according to Musk, Tesla’s goal is to reduce service in its vehicles anyway. “Unlike other makers of cars, our goal is *not* to profit from service. Best service is not needing service in the first place,” Musk noted.

It is among the longest flights by an electric aircraft.


The company, which is backed by Toyota and recently acquired Uber’s flying taxi division, has said that it plans to have a full-scale air taxi service in operation by 2024, including regional trips. The point of the 150-mile flight was to demonstrate how far its aircraft could fly on a single charge, to allay concerns about the vehicle’s range and battery. If you want to fly from New York City to Montauk, Joby wanted to show that it can get you there without running out of juice.

“We’ve achieved something that many thought impossible with today’s battery technology,” JoeBen Bevirt, founder and CEO of Joby, said in a statement. “By doing so we’ve taken the first step towards making convenient, emissions-free air travel between places like San Francisco and Lake Tahoe, Houston and Austin, or Los Angeles and San Diego an everyday reality.”

Roads that can charge electric cars or buses while you drive aren’t a new concept, but so far the technology has been relatively expensive and inefficient. However, Indiana’s Department of Transport (INDOT) has announced that it’s testing a new type of cement with embedded magnetized particles that could one day provide efficient, high-speed charging at “standard roadbuilding costs,” Autoblog has reported.

With funding from the National Science Foundation (NSF), INDOT has teamed with Purdue University and German company Magment on the project. They’ll carry out the research in three phases, first testing if the magnetized cement (called “magment,” naturally) will work in the lab, then trying it out on a quarter-mile section of road.

In a brochure, Magment said its product delivers “record-breaking wireless transmission efficiency [at] up to 95 percent,” adding that it can be built at “standard road-building installation costs” and that it’s “robust and vandalism-proof.” The company also notes that slabs with the embedded ferrite particles could be built locally, presumably under license.

The photovoltaic effect of ferroelectric crystals can be increased by a factor of 1000 if three different materials are arranged periodically in a lattice. This has been revealed in a study by researchers at Martin Luther University Halle-Wittenberg (MLU). They achieved this by creating crystalline layers of barium titanate, strontium titanate and calcium titanate which they alternately placed on top of one another. Their findings, which could significantly increase the efficiency of solar cells, were published in the journal Science Advances.

Most solar cells are currently silicon based; however, their efficiency is limited. This has prompted researchers to examine new materials, such as ferroelectrics like barium , a mixed oxide made of barium and titanium. “Ferroelectric means that the material has spatially separated positive and negative charges,” explains physicist Dr Akash Bhatnagar from MLU’s Centre for Innovation Competence SiLi-nano. “The charge separation leads to an asymmetric structure that enables electricity to be generated from light.” Unlike silicon, ferroelectric crystals do not require a so-called pn junction to create the photovoltaic effect, in other words, no positively and negatively doped layers. This makes it much easier to produce the solar panels.

However, pure barium titanate does not absorb much sunlight and consequently generates a comparatively low photocurrent. The latest research has shown that combining extremely thin layers of different materials significantly increases the solar energy yield. “The important thing here is that a ferroelectric material is alternated with a paraelectric material. Although the latter does not have separated charges, it can become ferroelectric under certain conditions, for example at low temperatures or when its is slightly modified,” explains Bhatnagar.