Menu

Blog

Archive for the ‘computing’ category: Page 16

Dec 4, 2024

Scientists Solve a 40-Year Quantum Mystery That Could Change Electronics Forever

Posted by in categories: computing, quantum physics

Quantum chaos, previously theoretical, has been observed experimentally, validating a 40-year-old theory about electrons forming patterns in confined spaces.

Using advanced imaging techniques on graphene, researchers confirmed “quantum scars,” where electrons follow unique closed orbits. These findings could revolutionize electronics by enabling efficient, low-power transistors and paving the way for novel quantum control methods. This discovery offers insights into chaotic quantum systems, bridging a gap between classical and quantum physics.

Continue reading “Scientists Solve a 40-Year Quantum Mystery That Could Change Electronics Forever” »

Dec 4, 2024

Mind-Reading Tattoos Revolutionize Brainwave Monitoring in Real-Time

Posted by in categories: computing, neuroscience

Researchers have developed a liquid ink that can be printed directly onto the scalp to monitor brain activity, offering a less intrusive alternative to traditional EEG setups.

This ink enables the creation of e-tattoos that accurately track brainwaves and maintain connectivity over extended periods. These innovations could drastically change the application of brain-computer interface technologies, making them more comfortable and efficient for users.

Continue reading “Mind-Reading Tattoos Revolutionize Brainwave Monitoring in Real-Time” »

Dec 4, 2024

China hits record-breaking 1.85 terabytes of data storage in diamonds

Posted by in categories: computing, mapping

To demonstrate the capabilities of their diamond storage system, the researchers encoded a famous sequence of photographs by Eadweard Muybridge.

“The team then stored images by mapping the brightness of each pixel to the brightness levels of specific sites inside the diamond,” New Scientist reported.

Continue reading “China hits record-breaking 1.85 terabytes of data storage in diamonds” »

Dec 4, 2024

The Future Of Quantum Computing

Posted by in categories: computing, particle physics, quantum physics

Each quantum computing trajectory faces unique developmental needs. Gate-based quantum computers require scalability, error correction and quantum gate fidelity improvements to achieve stable, accurate computations. The whole-systems approach needs advances in qubit connectivity and reductions in noise interference to boost computational reliability. Meanwhile, parsing-of-totality depends on advancing sensing techniques to harness atoms’ deeper patterns and potentiality.

Major investments are currently directed toward gate-based quantum computing, with IBM, Google and Microsoft leading the charge, aiming for universal quantum computation. However, the idea of universal quantum computation remains complex given that the parsing-of-totality approach suggests the possibility of new quantum patterns, properties and even principles that could require a conceptual shift as radical as the transition from classical bits to quantum qubits.

All three trajectories will play essential roles in the future of quantum computing. Gate-based systems may ultimately achieve universal applicability. Whole-systems quantum computing will continue to reframe a larger class of problems as complex adaptive systems requiring optimization to be solved. The parsing-based approaches will leverage novel quantum principles to spawn new quantum technologies.

Dec 4, 2024

Scientists Turned a Quantum Computer Into a Time Crystal

Posted by in categories: computing, particle physics, quantum physics

This study focuses on topological time crystals, which sort of take this idea and make it a bit more complex (not that it wasn’t already). A topological time crystal’s behavior is determined by overall structure, rather than just a single atom or interaction. As ZME Science describes, if normal time crystals are a strand in a spider’s web, a topological time crystal is the entire web, and even the change of a single thread can affect the whole web. This “network” of connection is a feature, not a flaw, as it makes the topological crystal more resilient to disturbances—something quantum computers could definitely put to use.

In this experiment, scientists essentially embedded this behavior into a quantum computer, creating fidelities that exceeded previous quantum experiments. And although this all occurred in a prethermal regime, according to ZME Science, it’s still a big step forward towards potentially creating a more stable quantum computer capable of finally unlocking that future that always feels a decade from our grasp.

Dec 4, 2024

Hackers claim major breakthrough in Windows and Office license fraud

Posted by in categories: computing, innovation

Massgrave, a piracy group developing activation scripts for Microsoft products, claims to have discovered a new method to permanently activate “almost any version of Windows and Office.”

This group is behind the MAS (Microsoft Activation Scripts) project, which develops piracy tools to activate various versions of Microsoft Windows operating systems and Office products. Unauthorized software license manipulation is illegal in most jurisdictions.

Continue reading “Hackers claim major breakthrough in Windows and Office license fraud” »

Dec 3, 2024

The Role Of Quantum Computing In Personalized Medicine

Posted by in categories: biotech/medical, computing, genetics, information science, quantum physics

The integration of quantum computing into personalized medicine holds great promise for revolutionizing disease diagnosis, treatment development, and patient outcomes. Quantum computers have the potential to process vast amounts of genetic data much faster than classical computers, enabling researchers to identify patterns and correlations that may not be apparent with current technology. This could lead to breakthroughs in understanding the genetic basis of complex diseases and developing targeted treatments.

Quantum computing also has the potential to revolutionize medical imaging by enabling the simulation of complex magnetic resonance imaging (MRI) and positron emission tomography (PET) scans. Quantum algorithms can efficiently process large-scale imaging data, enabling researchers to reconstruct high-resolution images that reveal subtle details about tissue structure and function. This has significant implications for disease diagnosis and treatment, where accurate imaging is critical for developing effective treatments.

The use of quantum computing in personalized medicine raises important ethical considerations, such as concerns about privacy and informed consent. The ability to rapidly analyze large amounts of genetic data also raises questions about how this information should be used and shared with patients. Regulatory frameworks will play a crucial role in shaping the development and deployment of quantum computing in personalized medicine, balancing the need to promote innovation with the need to protect patient safety and privacy.

Dec 3, 2024

NASA’s Next Mission to Uranus: Searching for Liquid Water Oceans on Icy Moons

Posted by in categories: computing, space

“Discovering liquid water oceans inside the moons of Uranus would transform our thinking about the range of possibilities for where life could exist,” said Dr. Douglas Hemingway.


Do the moons of Uranus have interior liquid oceans like the moons of Jupiter and Saturn? This is what a recent study published in Geophysical Research Letters hopes to address as a pair of researchers investigated the likelihood of five Uranus moons, Miranda, Ariel, Umbriel, Titania, and Oberon possessing interior oceans. This study holds the potential to not only help researchers better understand the compositions of these moons, but also establish a framework for sending a spacecraft to Uranus for the first time since NASA’s Voyager 2 in 1986.

For the study, the researchers used computer models to simulate changes in each moon’s wobble with the goal of estimating the potential amount of liquid water that each moon could be harboring. This technique could be used to detect liquid oceans within these moons, thus increasing the feasibility of a future spacecraft mission to Uranus.

Continue reading “NASA’s Next Mission to Uranus: Searching for Liquid Water Oceans on Icy Moons” »

Dec 3, 2024

Venus Never Had Oceans: New Study Rules Out Past Habitability

Posted by in categories: climatology, computing, space

Did Venus have oceans in its ancient past and could they have supported life as we know it, or even as we don’t know it? This is what a recent study published in Nature Astronomy hopes to address as a team of researchers from the University of Cambridge investigated the climate history of Venus and whether it possessed liquid water oceans on its surface deep in its past. This study holds the potential to help scientists better understand past conditions on planetary bodies throughout the solar system and what this could mean for finding evidence of ancient life beyond Earth.

For the study, the researchers used computer models to estimate how fast the Venusian atmosphere is losing water, carbon dioxide, and carbonyl sulphide molecules, all of which are required to be replenished by volcanic gases so atmospheric stability can be maintained. Therefore, by studying how fast these molecules are leaving the atmosphere, scientists can estimate the amount of present and past volcanic activity on Venus, thus determining if Venus once had oceans of liquid water that might have supported life as we know it. In the end, the researchers determined that Venus is far too dry to have ever possessed bodies of liquid oceans on its surface.

“We won’t know for sure whether Venus can or did support life until we send probes at the end of this decade,” said Tereza Constantinou, who is a PhD student at Cambridge’s Institute of Astronomy and lead author of the study. “But given it likely never had oceans, it is hard to imagine Venus ever having supported Earth-like life, which requires liquid water.”

Dec 3, 2024

Mizzou establishes IBM Quantum Innovation Center

Posted by in categories: computing, quantum physics

As part of IBM Quantum Network, Mizzou will be able to provide researchers and other institutions cloud access to quantum computing, a new type of computing that’s swiftly advancing and full of potential.

Page 16 of 882First1314151617181920Last