Toggle light / dark theme

Accelerating anti-aging cyclic peptide discovery through computational design and automated synthesis

Cyclic peptides, with their unique structures and versatile biological activities, hold great potential for combating skin aging issues such as wrinkles, laxity, and pigmentation. However, traditional discovery methods relying on iterative synthesis and screening are labor-intensive and resource-intensive. Here, we present an integrated platform combining automated rapid cyclopeptide synthesis, virtual screening, and biological activity assessment, enabling the transformation of designed cyclic peptide sequences into chemical entities within minutes with high crude purity. Using ADCP docking with the ADFR suite, we identified a series of novel cyclic peptides targeting JAK1, Keap1, and TGF-β proteins.

From Algebra to Cosmology: Stephen Wolfram on Physics & the Nature of the Universe

Physicist and computer scientist Stephen Wolfram explores how simple rules can generate complex realities, offering a bold new vision of fundamental physics and the structure of the universe.

Stephen Wolfram is a British-American computer scientist, physicist, and businessman. He is known for his work in computer algebra and theoretical physics. In 2012, he was named a fellow of the American Mathematical Society. He is the founder and CEO of the software company Wolfram Research, where he works as chief designer of Mathematica and the Wolfram Alpha answer engine.

Watch more CTT Chats here: https://t.ly/jJI7e

Computational tool ranks compounds to improve cancer immunotherapy effectiveness

A study published in Cell Reports Medicine reports a scalable, data-driven computational framework for designing combinatorial immunotherapies, offering hope for patients with poor responses to current immunotherapies.

Immunotherapy, particularly immune checkpoint blockade (ICB), has revolutionized . Widespread resistance to ICB is a major challenge in clinical practice.

To enhance treatment efficacy and overcome resistance, combining ICB therapy with chemotherapy or targeted therapy has become an important research direction. However, candidate combinations rely on empirical selection from existing drugs, and it is difficult to discover new candidates.

‘Neglected’ particles that could rescue quantum computing

One of the most promising approaches to overcoming this challenge is topological quantum computing, which aims to protect quantum information by encoding it in the geometric properties of exotic particles called anyons. These particles, predicted to exist in certain two-dimensional materials, are expected to be far more resistant to noise and interference than conventional qubits.

“Among the leading candidates for building such a computer are Ising anyons, which are already being intensely investigated in condensed matter labs due to their potential realization in exotic systems like the fractional quantum Hall state and topological superconductors,” said Aaron Lauda, professor of mathematics, physics and astronomy at the USC Dornsife College of Letters, Arts and Sciences and the study’s senior author. “On their own, Ising anyons can’t perform all the operations needed for a general-purpose quantum computer. The computations they support rely on ‘braiding,’ physically moving anyons around one another to carry out quantum logic. For Ising anyons, this braiding only enables a limited set of operations known as Clifford gates, which fall short of the full power required for universal quantum computing.”

But in a new study published in Nature Communications, a team of mathematicians and physicists led by USC researchers has demonstrated a surprising workaround. By adding a single new type of anyon, which was previously discarded in traditional approaches to topological quantum computation, the team shows that Ising anyons can be made universal, capable of performing any quantum computation through braiding alone. The team dubbed these rescued particles neglectons, a name that reflects both their overlooked status and their newfound importance. This new anyon emerges naturally from a broader mathematical framework and provides exactly the missing ingredient needed to complete the computational toolkit.

New transmitter could make wireless devices more energy-efficient

Researchers from MIT and elsewhere have designed a novel transmitter chip that significantly improves the energy efficiency of wireless communications, which could boost the range and battery life of a connected device.

Their approach employs a unique modulation scheme to encode digital data into a wireless signal, which reduces the amount of error in the transmission and leads to more reliable communications.

Heavy fermions entangled: Discovery of Planckian time limit opens doors to novel quantum technologies

A joint research team from Japan has observed “heavy fermions,” electrons with dramatically enhanced mass, exhibiting quantum entanglement governed by the Planckian time—the fundamental unit of time in quantum mechanics. This discovery opens up exciting possibilities for harnessing this phenomenon in solid-state materials to develop a new type of quantum computer. The findings are published in npj Quantum Materials.

Heavy fermions arise when conduction electrons in a solid interact strongly with localized magnetic electrons, effectively increasing their mass. This phenomenon leads to unusual properties like unconventional superconductivity and is a central theme in condensed matter physics. Cerium-rhodium-tin (CeRhSn), the material studied in this research, belongs to a class of heavy fermion systems with a quasi-kagome lattice structure, known for its geometrical frustration effects.

Researchers investigated the electronic state of CeRhSn, known for exhibiting non-Fermi liquid behavior at relatively high temperatures. Precise measurements of CeRhSn’s reflectance spectra revealed non-Fermi liquid behavior persisting up to near room temperature, with heavy electron lifetimes approaching the Planckian limit. The observed spectral behavior, describable by a single function, strongly indicates that heavy electrons in CeRhSn are quantum entangled.

AMD is selling record numbers of CPUs at Intel’s expense

AMD just reported its Q2 2025 earnings, and it’s attributing a new quarterly revenue record of $7.7 billion to one particular thing: “record server and PC processor sales.” And while AMD doesn’t mention its flagging competitor Intel, it seems many are turning to Team Red: AMD just crossed 40 percent market share for the first time on the Steam Hardware Survey of PC gamers, and it may have 40 percent server market share soon too.

Pharmacy Professor Works to Unlock Secrets of Cellular Sugar

OXFORD, Miss. – A University of Mississippi pharmacy professor will study how sugar molecules on proteins could lead to new ways to detect and treat diseases using a prestigious grant from the National Science Foundation.

The NSF has awarded a Faculty Early Career Development Program grant to Jing Li, assistant professor of medical chemistry and research and assistant professor in the Research Institute of Pharmaceutical Science.

Li will use computer modeling to study the effects of sugar molecules connected to proteins. These molecules – known as glycosylation – affect ion channels that play a crucial role in brain activity, heartbeats and muscle movement.

Hybrid chip enables two-way conversion between terahertz and optical signals for ultrafast communications

Researchers at EPFL and Harvard University have engineered a chip that can convert between electromagnetic pulses in the terahertz and optical ranges on the same device. Their integrated design could enable the development of devices for ultrafast telecommunications, ranging, spectroscopy, and computing.

Terahertz radiation describes a band of waves on the electromagnetic spectrum with frequencies higher than microwaves (which are used in telecommunications technologies like Wi-Fi) but lower than (used in lasers and fiber optics). Their short wavelengths mean that terahertz (THz) signals can transmit large amounts of data very fast, but connecting THz radiation to existing optical and microwave technologies has been extremely challenging.

In 2023, researchers in the Laboratory of Hybrid Photonics came one step closer to bridging this gap when they created an extremely thin photonic chip made of that, when connected to a , produced finely tailorable THz waves. Now, the team has reported a novel design that not only generates THz waves but detects incoming ones as well by converting them to optical signals.

/* */