Menu

Blog

Archive for the ‘particle physics’ category: Page 54

Aug 2, 2024

Quantum Computers Need a Quantum Internet: Here’s Why

Posted by in categories: computing, internet, particle physics, quantum physics

Research on quantum internet technology highlights the challenge of producing stable photons at telecom wavelengths, with recent studies focusing on material improvements and advanced emission techniques to enhance quantum network efficiency.

Computers benefit greatly from being connected to the internet, so we might ask: What good is a quantum computer without a quantum internet?

The secret to our modern internet is the ability for data to remain intact while traveling over long distances, and the best way to achieve that is by using photons. Photons are single units (“quanta”) of light. Unlike other quantum particles, photons interact very weakly with their environment. That stability also makes them extremely appealing for carrying quantum information over long distances, a process that requires maintaining a delicate state of entanglement for an extended period of time. Such photons can be generated in a variety of ways. One possible method involves using atomic-scale imperfections (quantum defects) in crystals to generate single photons in a well-defined quantum state.

Aug 1, 2024

Nerve fibres in the brain could generate quantum entanglement

Posted by in categories: neuroscience, particle physics, quantum physics

Calculations show that nerve fibres in the brain could emit pairs of entangled particles, and this quantum phenomenon might explain how different parts of the brain work together.

By Karmela Padavic-Callaghan

Aug 1, 2024

Study finds black holes made from light are impossible — challenging Einstein’s theory of relativity

Posted by in categories: cosmology, particle physics

New theoretical research finds that it’s impossible to form a black hole with the energy of light particles alone, poking a hole in Einstein’s theory of general relativity.

Aug 1, 2024

Can quantum particles mimic gravitational waves?

Posted by in categories: cosmology, particle physics, quantum physics

When two black holes collide, space and time shake and energy spreads out like ripples in a pond. These gravitational waves, predicted by Einstein in 1916, were observed for the first time by the Laser Interferometer Gravitational-Wave Observatory (LIGO) telescope in September 2015.

Aug 1, 2024

Mind-Bending Discovery: Neutrons Defy Classical Physics in Astonishing Experiment

Posted by in categories: particle physics, quantum physics

Is nature really as strange as quantum theory says — or are there simpler explanations? Neutron measurements prove: It doesn’t work without the strange properties of quantum theory.

Quantum theory allows particles to exist in superposition states, defying classical realism. The Leggett-Garg inequality tests this by comparing quantum behavior against classical expectations. Recent neutron beam experiments at TU Wien confirmed that particles do violate this inequality, reinforcing the validity of quantum theory over classical explanations.

Aug 1, 2024

Future chips could swap silicon for a 3-atom-thick crystal semiconductor full of ‘defects’ that pack in more power

Posted by in categories: computing, particle physics

Next generation of computer chips could ditch silicon for TMD — a 2D material that is embedded with ‘defects’ which can be harnessed to improve performance.

Jul 31, 2024

Black holes as particle accelerators: a brief review

Posted by in categories: cosmology, particle physics

Tomohiro harada 1 and masashi kimura 2

Published 28 November 2014 • © 2014 IOP Publishing Ltd.

Jul 31, 2024

Newly discovered sheets of nanoscale ‘cubes’ make excellent catalysts

Posted by in categories: nanotechnology, particle physics

Researchers from Tokyo Metropolitan University have created sheets of transition metal chalcogenide “cubes” connected by chlorine atoms. While sheets of atoms have been widely studied e.g. graphene, the team’s work breaks new ground by using clusters instead. The team succeeded in forming nanoribbons inside carbon nanotubes for structural characterization, while also forming microscale sheets of cubes which could be exfoliated and probed. These were shown to be an excellent catalyst for generating hydrogen.

The findings have been published in Advanced Materials (“Superatomic layer of cubic Mo 4 S 4 clusters connected by Cl cross-linking”).

„ and show the arrangement of the nanosheet when viewed from different directions, respectively. (Image: Tokyo Metropolitan University)

Jul 31, 2024

‘Sensational breakthrough’ marks step toward revealing hidden structure of prime numbers

Posted by in categories: mathematics, particle physics

face_with_colon_three steps towards infinity getting much closer to the solution with reinmans hypothesis: D.


Just as molecules are composed of atoms, in math, every natural number can be broken down into its prime factors—those that are divisible only by themselves and 1. Mathematicians want to understand how primes are distributed along the number line, in the hope of revealing an organizing principle for the atoms of arithmetic.

“At first sight, they look pretty random,” says James Maynard, a mathematician at the University of Oxford. “But actually, there’s believed to be this hidden structure within the prime numbers.”

Continue reading “‘Sensational breakthrough’ marks step toward revealing hidden structure of prime numbers” »

Jul 30, 2024

Revolutionizing Data Storage: How 3D Metamaterials and Tiny Magnetic Bubbles Could Change Everything

Posted by in categories: particle physics, robotics/AI

For the first time, researchers have demonstrated that not just individual bits, but entire bit sequences can be stored in cylindrical domains: tiny, cylindrical areas measuring just around 100 nanometers. As the team reports in the journal Advanced Electronic Materials, these findings could pave the way for novel types of data storage and sensors, including even magnetic variants of neural networks.

Groundbreaking Magnetic Storage

“A cylindrical domain, which we physicists also call a bubble domain, is a tiny, cylindrical area in a thin magnetic layer. Its spins, the electrons’ intrinsic angular momentum that generates the magnetic moment in the material, point in a specific direction. This creates a magnetization that differs from the rest of the environment. Imagine a small, cylinder-shaped magnetic bubble floating in a sea of opposite magnetization,” says Prof. Olav Hellwig from Helmholtz-Zentrum Dresden-Rossendorf ’s Institute of Ion Beam Physics and Materials Research, describing the subject of his research. He and his team are confident that such magnetic structures possess a great potential for spintronic applications.

Page 54 of 608First5152535455565758Last