Menu

Blog

Archive for the ‘particle physics’ category: Page 58

Jun 5, 2024

Exploring the Unknown: A Unique Quantum State of Matter Emerges at Columbia

Posted by in categories: particle physics, quantum physics

Physicists at Columbia University have taken molecules to a new ultracold limit and created a state of matter where quantum mechanics reigns.

There’s a hot new BEC in town that has nothing to do with bacon, egg, and cheese. You won’t find it at your local bodega, but in the coldest place in New York: the lab of Columbia physicist Sebastian Will, whose experimental group specializes in pushing atoms and molecules to temperatures just fractions of a degree above absolute zero.

Writing in Nature, the Will lab, supported by theoretical collaborator Tijs Karman at Radboud University in the Netherlands, has successfully created a unique quantum state of matter called a Bose-Einstein Condensate (BEC) out of molecules.

Jun 5, 2024

Our universe may have an anti-universe twin on the other side of the Big Bang, say physicists

Posted by in categories: cosmology, particle physics

It’s possible that our universe is the antimatter counterpart of an antimatter universe that existed earlier in time than the Big Bang. So claim physicists in Canada, who have devised a new cosmological model positing the existence of a “antiuniverse” which, paired to our own, preserves a fundamental rule of physics called CPT symmetry. Though many details in their theory still need to be worked out, the researchers claim that it naturally explains the existence of dark matter.

According to standard cosmological models, the universe—which consists of space, time, and mass/energy—exploded into being about 14 billion years ago. Since then, it has expanded and cooled, causing subatomic particles, atoms, stars, and planets to gradually form.

Jun 5, 2024

Scientists Think Spacetime May Have Come From Magic

Posted by in categories: particle physics, quantum physics

There is quanta of space time just as there is for particles and fields created by entanglement or liebnitz was right and spacetime are relational entities.


Scientists believe that spacetime may have emerged, in part, from a quantum property called “magic.”

Jun 5, 2024

Sensing Magnetic Fields with an Array of Single Atoms

Posted by in categories: particle physics, quantum physics

Using an atomic array originally designed for quantum memory, researchers have demonstrated a magnetometer with unprecedented spatial resolution.

Jun 5, 2024

Google’s Quantum AI Challenges Long-Standing Physics Theories

Posted by in categories: information science, particle physics, quantum physics, robotics/AI

Quantum simulators are now addressing complex physics problems, such as the dynamics of 1D quantum magnets and their potential similarities to classical phenomena like snow accumulation. Recent research confirms some aspects of this theory, but also highlights challenges in fully validating the KPZ universality class in quantum systems. Credit: Google LLC

Quantum simulators are advancing quickly and can now tackle issues previously confined to theoretical physics and numerical simulation. Researchers at Google Quantum AI and their collaborators demonstrated this new potential by exploring dynamics in one-dimensional quantum magnets, specifically focusing on chains of spin-1/2 particles.

Continue reading “Google’s Quantum AI Challenges Long-Standing Physics Theories” »

Jun 4, 2024

Scientists develop ‘X-ray vision’ technique to see inside crystals

Posted by in category: particle physics

A team of New York University researchers has created a new way to visualize crystals by peering inside their structures, akin to having X-ray vision. Their new technique—which they aptly named “Crystal Clear”—combines the use of transparent particles and microscopes with lasers that allow scientists to see each unit that makes up the crystal and to create dynamic three-dimensional models.

Jun 3, 2024

Chemists uncover reversible assembly of platinum nanocatalyst

Posted by in categories: nanotechnology, particle physics

Chemists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory, Stony Brook University (SBU), and their collaborators have uncovered new details of the reversible assembly and disassembly of a platinum catalyst. The new understanding may offer clues to the catalyst’s stability and recyclability.

The work, described in a paper published in the journal Nanoscale (“Unravelling the origin of reaction-driven aggregation and fragmentation of atomically dispersed Pt catalyst on ceria support”), reveals how single platinum atoms on a cerium oxide support aggregate under reaction conditions to form active catalytic nanoparticles — and then, surprisingly, fragment once the reaction is stopped.

Fragmentation may sound shattering, but the scientists say it could be a plus.

Jun 3, 2024

Teleportation of Quantum Particles and Impact

Posted by in categories: particle physics, quantum physics

Explore the fascinating world of quantum teleportation. Discover its principles, applications, and the profound impact it could have on our future.

Introduction to Quantum Teleportation

Quantum teleportation, a term that sounds like it’s straight out of science fiction, is a very real and advancing field in quantum physics. This groundbreaking technology is not about transporting matter from one place to another but rather involves the transfer of information between quantum particles. This article delves into the science behind quantum teleportation, its potential applications, and the impact it could have on various aspects of our lives.

Jun 3, 2024

Physicists take molecules to a new ultracold limit, creating a state of matter where quantum mechanics reigns

Posted by in categories: particle physics, quantum physics

There’s a hot new BEC in town that has nothing to do with bacon, egg, and cheese. You won’t find it at your local bodega, but in the coldest place in New York: the lab of Columbia physicist Sebastian Will, whose experimental group specializes in pushing atoms and molecules to temperatures just fractions of a degree above absolute zero.

Jun 3, 2024

New precision measurement program advances understanding of proton halos

Posted by in category: particle physics

In May 2022, the Facility for Rare Isotope Beams (FRIB) at Michigan State University (MSU), launched its precision measurement program. Staff from FRIB’s Low Energy Beam and Ion Trap (LEBIT) facility take high-energy, rare-isotope beams generated at FRIB and cool them to a lower energy state. Afterward, the researchers measure specific particles’ masses at high precision.

Page 58 of 592First5556575859606162Last