Menu

Blog

Archive for the ‘neuroscience’ category: Page 491

Dec 28, 2020

The Brain Network Driving Changes in Consciousness

Posted by in category: neuroscience

Summary: A brain network consisting of the thalamus, anterior and posterior cingulate cortex, and angular gyri was implicated in the loss, and return, of consciousness under both anesthetic and natural sleep.

Source: SfN

The loss and return of consciousness is linked to the same network of brain regions for both sleep and anesthesia, according to new research published in Journal of Neuroscience.

Dec 28, 2020

Wait, What? New Research Says Internet Use Is Killing Your Memory

Posted by in categories: internet, neuroscience

This doesn’t sound good. 😃


The scientists put hundreds of participants through memory and cognitive tasks as well as brain scans, according to the research, published last month in the journal World Psychiatry.

Joseph Firth, the Western Sydney University scientist who led the project, described in a press release how the internet’s design is changing both the structure and abilities of the human brain.

Continue reading “Wait, What? New Research Says Internet Use Is Killing Your Memory” »

Dec 28, 2020

A Major Malformation Illustrates the Incredible Plasticity of the Human Brain

Posted by in categories: biotech/medical, neuroscience

People born without a corpus callosum do not have a bridge between the two cerebral hemispheres. Neuroscientists from UNIGE have shown how the brain manages to adapt.

One in 4000 people is born without a corpus callosum, a brain structure consisting of neural fibers that are used to transfer information from one hemisphere to the other. A quarter of these individuals do not have any symptoms, while the remainder either have low intelligence quotients or suffer from severe cognitive disorders. In a study published in the journal Cerebral Cortex, neuroscientists from the University of Geneva (UNIGE) discovered that when the neuronal fibers that act as a bridge between the hemispheres are missing, the brain reorganizes itself and creates an impressive number of connections inside each hemisphere. These create more intra-hemispheric connections than in a healthy brain, indicating that plasticity mechanisms are involved. It is thought that these mechanisms enable the brain to compensate for the losses by recreating connections to other brain regions using alternative neural pathways.

The corpus callosum develops in utero between the tenth and twentieth week of gestation. Agenesis of the corpus callosum is a congenital brain malformation in which this brain structure fails to develop, resulting in one out of 4000 babies born without a corpus callosum. When it is missing, nothing replaces this structure measuring about ten centimeters, with the exception of cerebrospinal fluid. This means that the information transmitted from one hemisphere to the other can no longer be conveyed by the neuronal projections from the corpus callosum. “Their role in a healthy brain,” begins Vanessa Siffredi, a researcher in UNIGE’s Faculty of Medicine, “is to ensure the functioning of various cognitive and sensorimotor functions.” Surprisingly, 25% of people with this malformation have no visible signs; 50% have average intelligence quotients and learning difficulties; and the remaining 25% suffer from severe cognitive disorders.

Dec 27, 2020

Ketamine may ease depression

Posted by in categories: biotech/medical, neuroscience

Jason Asbahr.

Reese Jones


New research suggests that electrophysiological brain signals associated with neural plasticity could help explain the rapid, antidepressant effects of the drug ketamine. The findings, European Neuropsychopharmacology, indicate that ketamine could reverse insensitivity to prediction error in depression.

Continue reading “Ketamine may ease depression” »

Dec 26, 2020

Heartbreaking Study Shows The Long-Term Effects of Yelling at Your Dog

Posted by in category: neuroscience

Your dog may be the apple of your eye, but let’s be honest: she is an animal, with her own instincts and idiosyncrasies, and there are going to be times when she makes you want to tear your hair out.

However much you want to, however, new research suggests that you should never yell at or otherwise punish a mischievous mutt.

According to a study released in pre-print last year and now published in PLOS ONE, aversive training such as positive punishment and negative reinforcement can have long-term negative effects on your dog’s mental state.

Dec 26, 2020

Stanford scientists assemble human nerve circuit driving voluntary movement

Posted by in categories: biotech/medical, neuroscience

A Stanford Medicine team used human stem cells to assemble a working nerve circuit connecting brain tissue to muscle tissue. The research could enable scientists to better understand neurological disorders that affect movement.

Dec 25, 2020

Consciousness: Redefining the Mind-Body Problem

Posted by in categories: neuroscience, physics

Consciousness is fundamental, pre-exists our Universe and manifests in everything that we think of as real. A brain, as important as it seems, is nothing more than the way that non-local consciousness operates at an “avatar” level during a lifetime. The evidence that all of this is true is consistent and overwhelming. But mainstream science is still bound by the centuries-old “materialist dogma” and stuck with the “hard problem” of consciousness. ​If we assume that consciousness doesn’t arise from the brain activity, as some neuroscientists still presume to be true, where does it come from? #consciousness #mind #self #theology #physics


Discussion of the hard problem of consciousness with certain solutions in phenomenology, possibilities of mind-uploading and implications…

Dec 25, 2020

Protein may clarify Alzheimer’s and body clock link

Posted by in categories: biotech/medical, neuroscience

Poor sleep and other issues with circadian rhythm are common for people with Alzheimer’s disease. Now researchers may have a clue to why.


“If your circadian clock is not quite right for years and years—you routinely suffer from disrupted sleep at night and napping during the day—the cumulative effect of chronic dysregulation could influence inflammatory pathways such that you accumulate more amyloid plaques,” says Erik Musiek. (Credit: Getty Images)

Fractured sleep, daytime sleepiness, and other signs of disturbance in one’s circadian rhythm are common complaints of people with Alzheimer’s disease, and the problems only get worse as the disease progresses.

Dec 24, 2020

Scientists pioneer new method of measuring electricity in cells

Posted by in categories: biotech/medical, neuroscience

Electricity is a key ingredient in living bodies. We know that voltage differences are important in biological systems; they drive the beating of the heart and allow neurons to communicate with one another. But for decades, it wasn’t possible to measure voltage differences between organelles—the membrane-wrapped structures inside the cell—and the rest of the cell.

A pioneering technology created by UChicago scientists, however, allows researchers to peer into cells to see how many different organelles use voltages to carry out functions.

“Scientists had noticed for a long time that charged dyes used for staining cells would get stuck in the mitochondria,” explained graduate student Anand Saminathan, the first author for the paper, which was published in Nature Nanotechnology. “But little work has been done to investigate the membrane potential of other organelles in live cells.”

Dec 24, 2020

The Case for Teleological Evolution

Posted by in categories: cosmology, evolution, mathematics, neuroscience, quantum physics, singularity

The Big Bang might never have existed as many cosmologists start to question the origin of the Universe. The Big Bang is a point in time defined by a mathematical extrapolation. The Big Bang theory tells us that something has to have changed around 13.7 billion years ago. So, there is no “point” where the Big Bang was, it was always an extended volume of space, according to the Eternal Inflation model. In light of Digital Physics, as an alternative view, it must have been the Digital Big Bang with the lowest possible entropy in the Universe — 1 bit of information — a coordinate in the vast information matrix. If you were to ask what happened before the first observer and the first moments after the Big Bang, the answer might surprise you with its straightforwardness: We extrapolate backwards in time and that virtual model becomes “real” in our minds as if we were witnessing the birth of the Universe.

In his theoretical work, Andrew Strominger of Harvard University speculates that the Alpha Point (the Big Bang) and the Omega Point form the so-called ‘Causal Diamond’ of the conscious observer where the Alpha Point has only 1 bit of entropy as opposed to the maximal entropy of some incredibly gigantic amount of bits at the Omega Point. While suggesting that we are part of the conscious Universe and time is holographic in nature, Strominger places the origin of the Universe in the infinite ultra-intelligent future, the Omega Singularity, rather than the Big Bang.

The Universe is not what textbook physics tells us except that we perceive it in this way — our instruments and measurement devices are simply extensions of our senses, after all. Reality is not what it seems. Deep down it’s pure information — waves of potentiality — and consciousness orchestrating it all. The Big Bang theory, drawing a lot of criticism as of late, uses a starting assumption of the “Universe from nothing,” (a proverbial miracle, a ‘quantum fluctuation’ christened by scientists), or the initial Cosmological Singularity. But aside from this highly improbable happenstance, we can just as well operate from a different set of assumptions and place the initial Cosmological Singularity at the Omega Point — the transcendental attractor, the Source, or the omniversal holographic projector of all possible timelines.