Menu

Blog

Page 3521

Sep 29, 2022

Hurricane Ian live updates: Hundreds of rescues in Florida as Ian eyes Carolinas

Posted by in category: climatology

Hurricane Ian made landfall on Florida’s west coast Wednesday afternoon as a powerful Category 4 storm.

Sep 29, 2022

Watch the world’s first hydrofoiling ground effect vehicle take off

Posted by in categories: energy, sustainability, transportation

Regent has released video of its remarkable Seaglider prototype in flight testing. The first machine to combine the efficiency advantages of ground effect and hydrofoiling in a single design, it promises revolutionary speed and range in coastal areas.

Wing-in-ground effect (WIG) aircraft such as the Soviet-era Ekranoplan have shown promise in the past, but they’re yet to take off, so to speak, as a mainstream form of transport. These low-flying birds ride on a cushion of air between their wings and the surface, which gives them a significant lift and efficiency boost over regular planes flying higher in the air – as long as they stay within their own wingspan of the surface beneath. This extreme altitude restriction means that while ground-effect aircraft could fly over land, it’s too dangerous for regular operations, and they typically stay over water.

Continue reading “Watch the world’s first hydrofoiling ground effect vehicle take off” »

Sep 29, 2022

Scientists send robot into furious hurricane and capture wild footage

Posted by in categories: climatology, drones, robotics/AI

Hurricane researchers sent a marine drone into Hurricane Fiona, where it captured intense footage of the tropical storm. The research drone will help scientists better understand how tropical storms rapidly intensify.

Sep 29, 2022

Rehabilitating spinal cord injury and stroke with graphene and gaming

Posted by in categories: biotech/medical, health

Few human injuries are as catastrophic as those to the spine. An accident, disease or act of violence affecting the spine can result in poor function – even paralysis – almost anywhere in the body.

The spinal column is enormously complex, with limited capacity for regeneration and any health implications are usually long-term and chronic.

While there is no known way to repair a spinal cord injury (SCI), scientists may be on the cusp of some important breakthroughs. New approaches are being taken to reverse the nerve damage, with some researchers attempting to reshape the architecture of the spinal cord using materials engineered in the laboratory.

Sep 29, 2022

Just like Back to the Future: A design company has created a 3D shoe that adapts to the wearer’s foot

Posted by in category: futurism

Have you ever desired to possess shoes like in the Back to Future movie? The shoes that tie the laces to fit the feet…

Well, it may not be exactly the same thing, but German company WertelOberfell seems to have managed to create 3D-printed shoes that adapt to your feet.

Sep 29, 2022

Forget Silicon. This Computer Is Made of Fabric

Posted by in categories: robotics/AI, wearables

The existing jacket can perform one logical operation per second, compared to the more than a billion operations per second typical of a home computer, says Preston. In practice, this means the jacket can only execute short command sequences. Due to the speed of the logic, along with some other engineering challenges, Zhang says he thinks it’ll take five to 10 years for these textile-based robots to reach commercial maturity.

In the future, Preston’s team plans to do away with the carbon dioxide canister, which is impractical. (You have to refill it like you would a SodaStream.) Instead, his team wants to just use ambient air to pump up the jacket. As a separate project, the team has already developed a foam insole for a shoe that pumps the surrounding air into a bladder worn around the waist when the wearer takes a step. They plan to integrate a similar design into the jacket.

Preston also envisions clothing that senses and responds to the wearer’s needs. For example, a sensor on a future garment could detect when the wearer is beginning to lift their arm and inflate without any button-pressing. “Based on some stimulus from the environment and the current state, the logic system can allow the wearable robot to choose what to do,” he says. We’ll be waiting for this fashion trend to blow up.

Sep 29, 2022

Super Heavy Element Factory Releases First Results

Posted by in category: particle physics

Initial findings of the Super Heavy Element Factory—an atom smasher in Russia—reveal details about some of the heaviest known elements.

Sep 29, 2022

Surprising Colors with Scotch Tape

Posted by in categories: biotech/medical, materials

A physicist’s do-it-yourself art project makes vibrant images with a pair of polarizers and carefully placed layers of transparent tape.

When the COVID-19 pandemic shut down universities and offices across the world in spring 2020, finding new hobbies to stave off fear (and boredom) became paramount. While some took up cross-stitch or a new stretching routine, Aaron Slepkov, a photonics researcher at the University of Trent in Peterborough, Canada, turned to a physics-inspired art form called polage to occupy his time.

Polage, or polarization-filtered coloration, as Slepkov calls it, is a kind of collage that uses polarizers and thin films to create brightly colored artworks that transform depending on how you look at them. This metamorphosis is made possible by birefringence, an optical property of certain materials that changes the polarization state of transmitted light. Examples of birefringent materials include ice, calcite crystals, cellophane film, and transparent tape.

Sep 29, 2022

Schrödinger Win for Extreme Waves

Posted by in category: futurism

Researchers create the most realistic rogue waves to date, showing dynamics that follow those expected for extreme waves in more idealized systems.

Sep 29, 2022

Breakthrough Prize for the Physics of Quantum Information…and of Cells

Posted by in categories: bioengineering, biotech/medical, genetics, information science, nanotechnology, quantum physics, robotics/AI

This year’s Breakthrough Prize in Life Sciences has a strong physical sciences element. The prize was divided between six individuals. Demis Hassabis and John Jumper of the London-based AI company DeepMind were awarded a third of the prize for developing AlphaFold, a machine-learning algorithm that can accurately predict the 3D structure of proteins from just the amino-acid sequence of their polypeptide chain. Emmanuel Mignot of Stanford University School of Medicine and Masashi Yanagisawa of the University of Tsukuba, Japan, were awarded for their work on the sleeping disorder narcolepsy.

The remainder of the prize went to Clifford Brangwynne of Princeton University and Anthony Hyman of the Max Planck Institute of Molecular Cell Biology and Genetics in Germany for discovering that the molecular machinery within a cell—proteins and RNA—organizes by phase separating into liquid droplets. This phase separation process has since been shown to be involved in several basic cellular functions, including gene expression, protein synthesis and storage, and stress responses.

The award for Brangwynne and Hyman shows “the transformative role that the physics of soft matter and the physics of polymers can play in cell biology,” says Rohit Pappu, a biophysicist and bioengineer at Washington University in St. Louis. “[The discovery] could only have happened the way it did: a creative young physicist working with an imaginative cell biologist in an ecosystem where boundaries were always being pushed at the intersection of multiple disciplines.”