Menu

Blog

Archive for the ‘neuroscience’ category: Page 589

Mar 27, 2020

Making sense of cells

Posted by in categories: biotech/medical, computing, food, mathematics, neuroscience

Our body’s ability to detect disease, foreign material, and the location of food sources and toxins is all determined by a cocktail of chemicals that surround our cells, as well as our cells’ ability to ‘read’ these chemicals. Cells are highly sensitive. In fact, our immune system can be triggered by the presence of just one foreign molecule or ion. Yet researchers don’t know how cells achieve this level of sensitivity.

Now, scientists at the Biological Physics Theory Unit at Okinawa Institute of Science and Technology Graduate University (OIST) and collaborators at City University of New York have created a simple model that is providing some answers. They have used this model to determine which techniques a cell might employ to increase its sensitivity in different circumstances, shedding light on how the biochemical networks in our bodies operate.

“This model takes a complex biological system and abstracts it into a simple, understandable mathematical framework,” said Dr. Vudtiwat Ngampruetikorn, former postdoctoral researcher at OIST and the first author of the research paper, which was published in Nature Communications. “We can use it to tease apart how cells might choose to spend their energy budget, depending on the world around them and other cells they might be talking to.”

Continue reading “Making sense of cells” »

Mar 25, 2020

The Brain Reshapes Our Malleable Senses to Fit the World

Posted by in category: neuroscience

How does experience alter our perceptions? This adapted book excerpt from We Know It When We See It describes how the brain’s visual system rewires itself to make the best use of its neural resources.

Mar 25, 2020

People with large brain reserves can circumvent Alzheimer’s. Here’s how to build yours

Posted by in categories: biotech/medical, neuroscience

It’s never too late to start strengthening your brain.

Mar 24, 2020

New genetic editing powers discovered in squid

Posted by in categories: biotech/medical, genetics, neuroscience

Revealing yet another super-power in the skillful squid, scientists have discovered that squid massively edit their own genetic instructions not only within the nucleus of their neurons, but also within the axon — the long, slender neural projections that transmit electrical impulses to other neurons. This is the first time that edits to genetic information have been observed outside of the nucleus of an animal cell.

The study, led by Isabel C. Vallecillo-Viejo and Joshua Rosenthal at the Marine Biological Laboratory (MBL), Woods Hole, is published this week in Nucleic Acids Research.

The discovery provides another jolt to the “central dogma” of molecular biology, which states that genetic information is passed faithfully from DNA to messenger RNA to the synthesis of proteins. In 2015, Rosenthal and colleagues discovered that squid “edit” their messenger RNA instructions to an extraordinary degree — orders of magnitude more than humans do — allowing them to fine-tune the type of proteins that will be produced in the nervous system.

Mar 24, 2020

This mind-reading chip will build a better prosthetic

Posted by in categories: biotech/medical, computing, cyborgs, neuroscience

Researchers have designed a brain-computer interface to read your mind better than ever.

Mar 23, 2020

New brain reading technology could help the development of brainwave-controlled devices

Posted by in categories: biotech/medical, neuroscience

A new method to accurately record brain activity at scale has been developed by researchers at the Crick, Stanford University and UCL. The technique could lead to new medical devices to help amputees, people with paralysis or people with neurological conditions such as motor neurone disease.

The research in mice, published in Science Advances, developed an accurate and scalable method to record brain activity across large areas, including on the surface and in deeper regions simultaneously.

Mar 23, 2020

Secret of the ‘immortal’ hydra’s regenerating ability uncovered

Posted by in categories: evolution, life extension, neuroscience

The hydra is named after the serpent monster from Greek myth, which regrows two heads each time one is cut off. But freshwater hydras have an even more impressive regenerating ability: an entire hydra can regrow from a small piece of tissue in only a few days.

Biologists are particularly excited by this ability, since many of the networks involved in the healing process developed early in the process of evolution, meaning that they are shared among many animals, including humans.

“In other organisms, like humans, once our brain is injured, we have difficulty recovering because the brain lacks the kind of regenerative abilities we see in hydra,” said researcher Abby Primack.

Mar 22, 2020

Bringing silicon computing power to the brain

Posted by in categories: computing, neuroscience

A new device enables researchers to observe hundreds of neurons in the brain in real-time. The system is based on modified silicon chips from cameras, but rather than taking a picture, it takes a movie of the neural electrical activity.

Mar 21, 2020

Valve president Gabe Newell: ‘We’re way closer to The Matrix than people realize’

Posted by in categories: computing, neuroscience, virtual reality

Think we’re far off from The Matrix? Gabe Newell says you should think again.

In a rare interview with IGN ahead of next week’s release of Half-Life: Alyx, Newell reasoned that more advanced forms of VR might not be too far out. “We’re way closer to The Matrix than people realize,” he stated. “It’s not going to be ‘The Matrix’, The Matrix is a movie and it misses all the interesting technical subtleties and just how weird the post-brain-computer interface world is going to be. But it’s going to have a huge impact on the kinds of experiences that we can create for people.”

Mar 20, 2020

Activation of the Anti-Aging and Cognition-Enhancing Gene Klotho

Posted by in categories: biotech/medical, life extension, neuroscience

Multiple lines of evidence show that the anti-aging and cognition-enhancing protein Klotho fosters neuronal survival, increases the anti-oxidative stress defense, and promotes remyelination of demyelinated axons. Thus, upregulation of the Klotho gene can potentially alleviate the symptoms and/or prevent the progression of age-associated neurodegenerative diseases such as Alzheimer’s disease and demyelinating diseases such as multiple sclerosis. Here we used a CRISPR-dCas9 complex to investigate single-guide RNA (sgRNA) targeting the Klotho promoter region for efficient transcriptional activation of the Klotho gene. We tested the sgRNAs within the — 1 to — 300 bp of the Klotho promoter region and identified two sgRNAs that can effectively enhance Klotho gene transcription. We examined the transcriptional activation of the Klotho gene using three different systems: a Firefly luciferase (FLuc) and NanoLuc luciferase (NLuc) coincidence reporter system, a NLuc knock-in in Klotho 3’-UTR using CRISPR genomic editing, and two human cell lines: neuronal SY5Y cells and kidney HK-2 cells that express Klotho endogenously. The two sgRNAs enhanced Klotho expression at both the gene and protein levels. Our results show the feasibility of gene therapy for targeting Klotho using CRISPR technology. Enhancing Klotho levels has a therapeutic potential for increasing cognition and treating age-associated neurodegenerative, demyelinating and other diseases, such as chronic kidney disease and cancer.

Keywords: Alzheimer’s disease; Cancer; Chronic kidney disease; Multiple sclerosis; Myelin; Neuroprotection.