Menu

Blog

Archive for the ‘neuroscience’ category: Page 435

Aug 21, 2021

DARPA Announces Research Teams to Develop Intelligent Event-Based Imagers

Posted by in categories: military, neuroscience

FENCE program selects researchers to develop low-power, low-latency neuromorphic camera technologies to enable future military applications.


DARPA today announced that three teams of researchers led by Raytheon, BAE Systems, and Northrop Grumman have been selected to develop event-based infrared (IR) camera technologies under the Fast Event-based Neuromorphic Camera and Electronics (FENCE) program. Event-based – or neuromorphic – cameras are an emerging class of sensors with demonstrated advantages relative to traditional imagers. These advanced models operate asynchronously and only transmit information about pixels that have changed. This means they produce significantly less data and operate with much lower latency and power.

“Neuromorphic refers to silicon circuits that mimic brain operation; they offer sparse output, low latency, and high energy efficiency,” said Dr. Whitney Mason, the program manager leading the FENCE program. “Event-based cameras operate under these same principles when dealing with sparse scenes, but currently lack advanced ‘intelligence’ to perform more difficult perception and control tasks.”

Continue reading “DARPA Announces Research Teams to Develop Intelligent Event-Based Imagers” »

Aug 21, 2021

Complex Trauma Linked to Cognitive Impairments and Mental Health Disorders

Posted by in categories: futurism, neuroscience

Summary: Young people who experienced complex early life trauma as a result of interpersonal violence or child abuse had more severe mental health problems and cognitive impairments than their peers with no exposure to trauma.

Source: King’s College London.

New research from King’s has explored whether different types of trauma confer the same risk of future mental illness, in the first study of its kind.

Aug 21, 2021

Neural Network Models of the Future – The Key to Unlocking How Our Brain Works

Posted by in categories: biotech/medical, neuroscience, robotics/AI

Summary: Researchers discuss different current neural network models and consider the steps that need to be taken to make them more realistic, and thus more useful, as possible.

Source: University of Plymouth.

Neuroscience is a field most obviously associated with medicine and/or psychology. However, my background in physics and computer science enables me to explore, and further understand, how the brain computes and stores information, identifying the underlying physical mechanisms and the interplay between them.

Aug 20, 2021

Lab-made mini brains grow their own sets of ‘eyes’

Posted by in category: neuroscience

A group of scientists has grown mini brains that have something their real counterparts do not: a set of eye-like structures called “optic cups” that give rise to the retina.

Aug 20, 2021

Synthetic Biology Approaches for Engineering Next-Generation Adenoviral Gene Therapies

Posted by in categories: bioengineering, biotech/medical, chemistry, genetics, nanotechnology, neuroscience

I am pleased to announce that my lead-author review paper has been published in ACS Nano! If you are interested in learning about the convergence of synthetic biology and adenoviral gene therapy, I encourage you to check out my paper.

If you cannot access the full text, I have also posted a local copy at the following link: https://logancollinsblog.files.wordpress.com/2021/08/synthet…s-2021.pdf.

#ACS #ACSNano #SyntheticBiology #GeneTherapy #Biology #Biotech #Science #Biotechnology #Nanotechnology #Adenovirus #Engineering #Virology

Continue reading “Synthetic Biology Approaches for Engineering Next-Generation Adenoviral Gene Therapies” »

Aug 20, 2021

Microengineered perfusable 3D-bioprinted glioblastoma model for in vivo mimicry of tumor microenvironment

Posted by in categories: bioengineering, biotech/medical, genetics, neuroscience

Many drugs show promising results in laboratory research but eventually fail clinical trials. We hypothesize that one main reason for this translational gap is that current cancer models are inadequate. Most models lack the tumor-stroma interactions, which are essential for proper representation of cancer complexed biology. Therefore, we recapitulated the tumor heterogenic microenvironment by creating fibrin glioblastoma bioink consisting of patient-derived glioblastoma cells, astrocytes, and microglia. In addition, perfusable blood vessels were created using a sacrificial bioink coated with brain pericytes and endothelial cells. We observed similar growth curves, drug response, and genetic signature of glioblastoma cells grown in our 3D-bioink platform and in orthotopic cancer mouse models as opposed to 2D culture on rigid plastic plates. Our 3D-bioprinted model could be the basis for potentially replacing cell cultures and animal models as a powerful platform for rapid, reproducible, and robust target discovery; personalized therapy screening; and drug development.

Cancer is the second leading cause of death globally. It is estimated that around 30 to 40% of patients with cancer are being treated with ineffective drugs ; therefore, preclinical drug screening platforms attempt to overcome this challenge. Several approaches, such as whole-exome or RNA sequencing (RNA-seq), aim to identify druggable, known mutations or overexpressed genes that may be exploited as a therapeutic target for personalized therapy. More advanced approaches offer to assess the efficacy of a drug or combinations of drugs in patient-derived tumor xenograft models or in vitro three-dimensional (3D) organoids. Unfortunately, most of the existing methods face unmet challenges, which limit their efficacy. For instance, cells can become quiescent or acquire somatic mutations while growing many generations on plastic under the influence of static mechanical forces and in the absence of functional vasculature.

Aug 20, 2021

Researchers reveal new insights on mechanism that could help treat muscle-related diseases

Posted by in categories: biotech/medical, chemistry, life extension, neuroscience

Investigators who previously developed a recipe for turning skin cells into primitive muscle-like cells that can be maintained indefinitely in the lab without losing the potential to become mature muscle have now uncovered how this recipe works and what molecular changes it triggers within cells. The research, which was led by scientists at Massachusetts General Hospital (MGH) and is published in Genes & Development, could allow clinicians to generate patient-matched muscle cells to help treat muscle injuries, aging-related muscle degeneration, or conditions such as muscular dystrophy.

It’s known that expression of a regulatory gene called MyoD is sufficient to directly convert into mature ; however, mature muscle do not divide and self-renew, and therefore they cannot be propagated for clinical purposes. “To address this shortcoming, we developed a system several years ago to convert skin cells into self-renewing muscle stem-like cells we coined induced myogenic progenitor cells, or iMPCs. Our system uses MyoD in combination with three chemicals we previously identified as facilitators of cell plasticity in other contexts,” explains senior author Konrad Hochedlinger, Ph.D., a principal investigator at the Center for Regenerative Medicine at MGH and a professor of medicine at Harvard Medical School.

In this latest study, Hochedlinger and his colleagues uncovered the details behind how this combination converts skin cells into iMPCs. They found that while MyoD expression alone causes skin cells to take on the identity of mature muscle cells, adding the three chemicals causes the skin cells to instead acquire a more primitive stem cell–like state. Importantly, iMPCs are molecularly highly similar to muscle tissue stem cells, and muscle cells derived from iMPCs are more stable and mature than muscle cells produced with MyoD expression alone.

Aug 19, 2021

Scientists 3D Print Living, Viable Brain Tumor, to Practice Killing It

Posted by in categories: 3D printing, biotech/medical, neuroscience

A team of mad scientists successfully 3D-printed out a living, “viable” glioblastoma tumor — the deadliest kind of brain cancer — for the express purpose of learning how to kill it.


Practice makes perfect!

Aug 18, 2021

The neural basis of consciousness

Posted by in category: neuroscience

1,634 views • Aug 13 2021 • Christof Koch — Allen Institute for Brain Science, Tiny Blue Dot Foundation.

Aug 18, 2021

Histamine and Inflammation Could Be Key Players in Depression

Posted by in category: neuroscience

What is causing chronic inflammation?


Summary: A new study adds to the growing body of research linking inflammation to depression. Researchers found the molecule histamine directly inhibits the release of serotonin in the brain by attaching to inhibitory receptors on serotonin neurons in mice.

Source: Imperial College London

Continue reading “Histamine and Inflammation Could Be Key Players in Depression” »