Menu

Blog

Archive for the ‘nanotechnology’ category: Page 131

May 17, 2022

Scientists prove diseased blood vessels communicate with the brain

Posted by in categories: bioengineering, biotech/medical, existential risks, genetics, government, lifeboat, nanotechnology, robotics/AI, singularity

An international team which includes University of Manchester scientists has for the first time demonstrated that nerve signals are exchanged between clogged up arteries and the brain.

The discovery of the previously unknown electrical circuit is a breakthrough in our understanding of atherosclerosis, a potentially deadly disease where plaques form on the innermost layer of arteries.

The study of mice found that new nerve bundles are formed on the outer layer of where the artery is diseased, so the brain can detect where the damage is and communicate with it.

May 16, 2022

Lighting up artificial neural networks with optomemristors

Posted by in categories: biological, nanotechnology, robotics/AI

A team of international scientists have performed difficult machine learning computations using a nano-scale device, named an “optomemristor.”

The chalcogenide thin-film device uses both light and to interact and emulate multi-factor biological computations of the mammalian brain while consuming very little energy.

To date, research on hardware for and machine learning applications has concentrated mainly on developing electronic or photonic synapses and neurons, and combining these to carry out basic forms of neural-type processing.

May 14, 2022

The future of desalination? A fast, efficient, selective membrane for purifying saltwater

Posted by in categories: biotech/medical, computing, nanotechnology

Water scarcity is a growing problem around the world. Desalination of seawater is an established method to produce drinkable water but comes with huge energy costs. For the first time, researchers use fluorine-based nanostructures to successfully filter salt from water. Compared to current desalination methods, these fluorous nanochannels work faster, require less pressure and less energy, and are a more effective filter.

If you’ve ever cooked with a nonstick Teflon-coated frying pan, then you’ve probably seen the way that wet ingredients slide around it easily. This happens because the key component of Teflon is fluorine, a lightweight element that is naturally repelling, or hydrophobic. Teflon can also be used to line pipes to improve the flow of water. Such behavior caught the attention of Associate Professor Yoshimitsu Itoh from the Department of Chemistry and Biotechnology at the University of Tokyo and his team. It inspired them to explore how pipes or channels made from fluorine might operate on a very different scale, the nanoscale.

“We were curious to see how effective a fluorous nanochannel might be at selectively filtering different compounds, in particular, water and salt. And, after running some complex computer simulations, we decided it was worth the time and effort to create a working sample,” said Itoh. “There are two main ways to desalinate water currently: thermally, using heat to evaporate seawater so it condenses as pure water, or by , which uses pressure to force water through a that blocks salt. Both methods require a lot of energy, but our tests suggest fluorous nanochannels require little energy, and have other benefits too.”

May 14, 2022

J. Lyding & L. Grill | Silicon-Based Nanotechnology & Manipulating Single Molecules on Surfaces

Posted by in categories: biotech/medical, computing, nanotechnology, quantum physics

Foresight Molecular Machines Group.
Program & apply to join: https://foresight.org/molecular-machines/

Joe Lyding.
Silicon-Based Nanotechnology: There’s Still Plenty of Room at the Bottom.
Joe Lyding is a distinguished professor in Electrical and Computer Engineering at the University of Illinios. His career includes constructing the first atomic resolution scanning tunneling microscope, discovering new industrial uses for deuterium, studying quantum size effects down to 2nm lateral graphene dimensions, and much more. His current research is focused on carbon nanoelectronics. Specifically using carbon nanoelectronics based on carbon nanotubes and graphene for future semiconducting device applications.

Continue reading “J. Lyding & L. Grill | Silicon-Based Nanotechnology & Manipulating Single Molecules on Surfaces” »

May 13, 2022

Tailored single photons: Optical control of photons as the key to new technologies

Posted by in categories: nanotechnology, particle physics, quantum physics

Physicists from Paderborn University have developed a novel concept for generating individual photons—tiny particles of light that make up electromagnetic radiation—with tailored properties, the controlled manipulation of which is of fundamental importance for photonic quantum technologies. The findings have now been published in the journal Nature Communications.

Professor Artur Zrenner, head of the “nanostructure optoelectronics” research group, explains how tailored desired states have so far posed a challenge: “Corresponding sources are usually based on light emissions from individual semiconductor quantum emitters, which generate the photons. Here, the properties of the emitted photons are defined by the fixed properties of the quantum emitter, and can therefore not be controlled with full flexibility.”

To get around the problem, the scientists have developed an all-optical, non-linear method to tailor and control single photon emissions. Based on this concept, they demonstrate laser-guided energy tuning and polarization control of photons (i.e., the light frequency and direction of oscillation of electromagnetic waves).

May 12, 2022

Scientists synthesize new, ultra-hard material

Posted by in categories: biotech/medical, engineering, military, nanotechnology

Russian scientists have synthesized a new ultra-hard material consisting of scandium containing carbon. It consists of polymerized fullerene molecules with scandium and carbon atoms inside. The work paves the way for future studies of fullerene-based ultra-hard materials, making them a potential candidate for photovoltaic and optical devices, elements of nanoelectronics and optoelectronics, and biomedical engineering as high-performance contrast agents. The study was published in Carbon.

The discovery of new, all-carbon molecules known as fullerenes almost 40 years ago was a revolutionary breakthrough that paved the way for fullerene nanotechnology. Fullerenes have a made of pentagons and hexagons that resembles a , and a cavity within the carbon frame of fullerene molecules can accommodate a variety of atoms.

The introduction of metal atoms into carbon cages leads to the formation of endohedral metallofullerenes (EMF), which are technologically and scientifically important owing to their unique structures and optoelectronic properties.

May 12, 2022

Quantum one-way street in topological insulator nanowires

Posted by in categories: computing, nanotechnology, quantum physics

Very thin wires made of a topological insulator could enable highly stable qubits, the building blocks of future quantum computers. Scientists see a new result in topological insulator devices as an important step towards realizing the technology’s potential.

An international group of scientists have demonstrated that wires more than 100 times thinner than a can act like a quantum one-way street for electrons when made of a peculiar material known as a .

The discovery opens the pathway for new technological applications of devices made from topological insulators and demonstrates a significant step on the road to achieving so-called topological qubits, which it has been predicted can robustly encode information for a quantum computer.

May 11, 2022

Cooling speeds up electrons in bacterial nanowires

Posted by in category: nanotechnology

The ground beneath our feet and under the ocean floor is an electrically-charged grid, the product of bacteria “exhaling” excess electrons through tiny nanowires in an environment lacking oxygen.

Yale University researchers have been studying ways to enhance this natural electrical conductivity within nanowires 1/100,000th width of a human hair by identifying the mechanism of electron flow.

Bacteria producing nanowires made up of cytochrome OmcS. (Image: Ella Maru Studio)

May 11, 2022

A new method for exploring the nano-world

Posted by in categories: biotech/medical, nanotechnology, particle physics, sustainability

Scientists at the Max Planck Institute for the Science of Light (MPL) and Max-Planck-Zentrum für Physik und Medizin (MPZPM) in Erlangen present a large step forward in the characterization of nanoparticles. They used a special microscopy method based on interfereometry to outperform existing instruments. One possible application of this technique may be to identify illnesses.

Nanoparticles are everywhere. They are in our body as , lipid vesicles, or viruses. They are in our drinking water in the form of impurities. They are in the air we breath as pollutants. At the same time, many drugs are based on the delivery of , including the vaccines we have recently been given. Keeping with the pandemics, quick tests used for the detection the SARS-Cov-2 are based on nanoparticles too. The red line, which we monitor day by day, contains myriads of gold nanoparticles coated with antibodies against proteins that report infection.

Technically, one calls something a nanoparticle when its size (diameter) is smaller than one micrometer. Objects of the order of one micrometer can still be measured in a normal microscope, but particles that are much smaller, say smaller than 0.2 micrometers, become exceedingly difficult to measure or characterize. Interestingly, this is also the size range of viruses, which can become as small as 0.02 micrometers.

May 11, 2022

A simpler approach for creating quantum materials

Posted by in categories: nanotechnology, quantum physics

Since graphene was first isolated and characterized in the early 2000s, researchers have been exploring ways to use this atomically thin nanomaterial because of its unique properties such as high tensile strength and conductivity.

In more recent years, twisted bilayer graphene, made of two sheets of graphene twisted to a specific “magic” angle, has been shown to have superconductivity, meaning that it can conduct electricity with very little resistance. However, using this approach to make devices remains challenging because of the low yield of fabricating twisted bilayer graphene.

Now, a new study shows how patterned, periodic deformations of a single layer of graphene transforms it into a material with previously seen in twisted graphene bilayers. This system also hosts additional unexpected and interesting conducting states at the boundary. Through a better understanding of how unique properties occur when single sheets of graphene are subjected to periodic strain, this work has the potential to create quantum devices such as orbital magnets and superconductors in the future. The study, published in Physical Review Letters, was conducted by graduate student Võ Tiến Phong and professor Eugene Mele in Penn’s Department of Physics & Astronomy in the School of Arts & Sciences.