Menu

Blog

Archive for the ‘life extension’ category: Page 116

Jun 17, 2023

Fluorescence-Based Detection of Ferrous Iron in Senescent Cells

Posted by in category: life extension

A major limitation in aging research is the lack of reliable biomarkers to assess phenotypic changes with age or monitor response to antiaging interventions. This study investigates the role of intracellular ferrous iron (Fe2+) as a potential biomarker of senescence. Iron is known to accumulate in various tissues with age and recent studies have demonstrated that its level increases dramatically in senescent cells. The current techniques used to measure the accumulation of iron are cumbersome and only measure total iron not specific isotopes such as the redox reactive Fe2+. It is still to be determined whether the damaging form of iron (Fe2+) is specifically elevated in senescent cells. In this study, we assessed the potential use of a newly discovered Fe2+ reactive probe (SiRhoNox-1) for selective labeling of senescent cells in vitro. For this we have generated various senescent cell models and subjected them to SiRhoNox-1 labeling. Our results indicate that SiRhoNox-1 selectivity labels live senescent cells and was more specific and faster than current staining such as SA-βGal or a derived fluorescent probe C12 FDG. Together these findings suggest that SiRhoNox-1 may serve as a convenient tool to detect senescent cells based on their ferrous iron level.

Keywords: SiRhoNox-1; aging; biomarker; iron; senescence.

Jun 16, 2023

Regenerating bone with deer antler stem cells

Posted by in categories: biotech/medical, life extension, neuroscience

Scientists from a collection of Chinese research institutions collaborated on a study of organ regeneration in mammals, finding deer antler blastema progenitor cells are a possible source of conserved regeneration cells in higher vertebrates. Published in the journal Science, the researchers suggest the findings have applications in clinical bone repair. With the activation of key characteristic genes, it could potentially be used in regenerative medicine for skeletal, long bone or limb regeneration.

Limb and organ regeneration is a long coveted technology in . Humans have some limited regenerative abilities, mostly in our livers. If a portion of the liver is removed, the remaining liver will begin to grow until it reaches its original functional size. Lungs, kidneys, and pancreas can do this also, though not as thoroughly or efficiently.

Continue reading “Regenerating bone with deer antler stem cells” »

Jun 16, 2023

Aging Is the Real Population Bomb

Posted by in categories: biotech/medical, food, life extension, policy

Population aging is the top global demographic trend; the pandemic can teach us how to prepare for it.

Total world population passed the 8 billion milestone on November 15, 2022. The progression from 7 to 8 billion people took a mere 12 years, conjuring up long-standing fears associated with rapid population growth, including food shortages, rampant unemployment, the depletion of natural resources, and unchecked environmental degradation.

But the most formidable demographic challenge facing the world is no longer rapid population growth, but population aging. Thoughtful preparedness—combining behavioral changes, investment in human capital and infrastructure, policy and institutional reforms, and technological innovations—can enable countries to meet the challenge and take advantage of the opportunities presented by demographic change.

Jun 15, 2023

Scientists have identified anti-aging drugs using AI technology

Posted by in categories: biotech/medical, chemistry, information science, life extension, robotics/AI

Artificial intelligence (AI) and its latest contribution to the development of anti-aging drugs has paved the way for breakthrough discoveries in modern medicine.

Researchers, using AI technology, have successfully identified three chemicals that specifically target malfunctioning cells, believed to be associated with certain cancers and Alzheimer’s disease.

A group of scientists from the University of Edinburgh developed an AI algorithm to screen a collection of over 4,300 chemical compounds.

Jun 15, 2023

Bioprinting personalized tissues and organs within the body: A breakthrough in regenerative medicine

Posted by in categories: 3D printing, bioprinting, biotech/medical, chemistry, cyborgs, life extension

In situ bioprinting, which involves 3D printing biocompatible structures and tissues directly within the body, has seen steady progress over the past few years. In a recent study, a team of researchers developed a handheld bioprinter that addresses key limitations of previous designs, i.e., the ability to print multiple materials and control the physicochemical properties of printed tissues. This device will pave the way for a wide variety of applications in regenerative medicine, drug development and testing, and custom orthotics and prosthetics.

The emergence of has resulted in substantial improvements in the lives of patients worldwide through the replacement, repair, or regeneration of damaged tissues and organs. It is a promising solution to challenges such as the lack of organ donors or transplantation-associated risks. One of the major advancements in regenerative medicine is on-site (or “in situ”) bioprinting, an extension of 3D , which is used to directly synthesize tissues and organs within the human body. It shows great potential in facilitating the repair and regeneration of defective tissues and organs.

Although significant progress has been made in this field, currently used in situ bioprinting technologies are not devoid of limitations. For instance, certain devices are only compatible with specific types of bioink, while others can only create small patches of tissue at a time. Moreover, their designs are usually complex, making them unaffordable and restricting their applications.

Jun 15, 2023

Transformer-based aging clock provides insights into aging

Posted by in categories: biotech/medical, life extension, robotics/AI

Clinical stage generative AI-driven drug discovery company Insilico Medicine has today published a paper on a new multimodal transformer-based aging clock; the new clock is capable of processing diverse data sets and providing insights into biomarkers for aging, mapping them to genes relevant to both aging and disease, and discovering new therapeutic targets to slow or reverse both aging and aging-related diseases.

Insilico calls the aging clock Precious1GPT, in a nod to the powerful “One Ring” in Tolkien’s Lord of the Rings; the findings have been published in the journal Aging.

Longevity. Technology: Insilico has been at the forefront of both generative AI and aging research, and has been publishing studies on biomarkers of aging using advanced bioinformatics since 2014. Later, the company trained deep neural networks (DNNs) on human “multi-omics” longitudinal data and retrained them on diseases to develop its end-to-end Pharma. AI platform for target discovery, drug design, and clinical trial prediction.

Jun 15, 2023

Aging — what it is and how to measure it

Posted by in categories: biological, life extension

The current understanding of the biology of aging is largely based on research aimed at identifying factors that influence lifespan. However, lifespan as a sole proxy measure of aging has limitations because it can be influenced by specific pathologies (not generalized physiological deterioration in old age). Hence, there is a great need to discuss and design experimental approaches that are well-suited for studies targeting the biology of aging, rather than the biology of specific pathologies that restrict the lifespan of a given species. For this purpose, we here review various perspectives on aging, discuss agreement and disagreement among researchers on the definition of aging, and show that while slightly different aspects are emphasized, a widely accepted feature, shared across many definitions, is that aging is accompanied by phenotypic changes that occur in a population over the course of an average lifespan. We then discuss experimental approaches that are in line with these considerations, including multidimensional analytical frameworks as well as designs that facilitate the proper assessment of intervention effects on aging rate. The proposed framework can guide discovery approaches to aging mechanisms in all key model organisms (e.g., mouse, fish models, D. melanogaster, C. elegans) as well as in humans.

Keywords: Aging; experimental design; lifespan; models; phenotypes.

Copyright © 2023 Elsevier B.V. All rights reserved.

Jun 14, 2023

Study shows exercise can ‘fight off’ diabetes risk

Posted by in categories: biotech/medical, genetics, life extension

Type 2 diabetes is a significant global health concern, affecting millions of individuals worldwide. The disease is associated with numerous complications, as well as an increased risk of premature mortality. Recent research conducted by the University of Sydney has shed light on the potential of physical activity in preventing the onset of type 2 diabetes, even in individuals with a high genetic risk for the disease [1]. This study underscores the importance of exercise as a key strategy for chronic disease prevention and offers promising news for individuals seeking to reduce their risk of developing type 2 diabetes.

Longevity. Technology: The worldwide burden of type 2 diabetes is substantial, and the disease carries significant implications for public health. Type 2 diabetes is associated with various complications, including cardiovascular diseases, kidney problems and nerve damage. Moreover, individuals with type 2 diabetes often experience a shortened lifespan and reduced healthspan due to the increased risk of developing other chronic conditions. The study’s findings add to the clarion call for effective prevention strategies that alleviate this burden on individuals, families and healthcare systems worldwide.

The research, published in the British Journal of Sports Medicine, involved 59,325 adults enrolled in the UK Biobank project. Participants wore accelerometers on their wrists to measure their physical activity levels and the researchers also considered genetic markers associated with a higher risk of type 2 diabetes. The study followed the participants for up to seven years to assess their health outcomes.

Jun 14, 2023

Unlocking the fountain of youth: Diet and exercise have a remarkable impact on cognition in older adults

Posted by in categories: life extension, neuroscience

The aim of non-pharmacologic interventions for brain health is to preserve cognitive function and safeguard brain structure. This review explores various diets (MeDi, DASH, MIND, ketogenic), exercise approaches (endurance, resistance, yoga, HIIT), and highlights the need for further research to uncover the underlying mechanisms.

Jun 14, 2023

New neuroscience research sheds light on why anxiety tends to diminish with age

Posted by in categories: biotech/medical, life extension, neuroscience

As people get older, they tend to have lower levels of anxiety. But why? A new brain imaging study has found that older individuals are faster at recognizing and responding to negative emotions. The findings, published NeuroImage, go against the idea that older adults are less engaged with negative emotions due to cognitive decline or that they are better at regulating negative emotions. Instead, the results suggest that older adults may develop a more automatic way of processing negative emotions.

The study aimed to investigate the relationship between aging, trait anxiety, and changes in cognitive and affective functions. The researchers were motivated by previous findings that older adults tend to have lower susceptibility to anxiety disorders compared to younger and middle-aged adults. However, it was not clear how age-related changes in anxiety symptoms, such as worry and somatic symptoms, were related to changes in cognitive and affective processes.

“We are interested in emotion dysfunction in early dementia, including those people with subjective complaints of memory problem and mild cognitive impairment,” said study author Chiang-shan Ray Li, a professor of psychiatry and neuroscience at Yale University School of Medicine.