Archive for the ‘computing’ category: Page 808
Feb 29, 2016
Physicists promise a copper revolution in nanophotonics
Posted by Shailesh Prasad in categories: computing, electronics, nanotechnology, physics
Researchers from the Moscow Institute of Physics and Technology (MIPT) have for the first time experimentally demonstrated that copper nanophotonic components can operate successfully in photonic devices – it was previously believed that only gold and silver components could do so. Copper components are not only just as good as components based on noble metals; they can also be easily implemented in integrated circuits using industry-standard fabrication processes. “This is a kind of revolution – using copper will solve one of the main problems in nanophotonics,” say the authors of the paper. The results have been published in the scientific journal Nano Letters.
The discovery, which is revolutionary for photonics and the computers of the future, was made by researchers from the Laboratory of Nanooptics and Plasmonics at MIPT’s Centre of Nanoscale Optoelectronics. They have succeeded, for the first time, in producing copper nanophotonic components, whose characteristics are just as good as those of gold components. It is interesting to note that the scientists fabricated the copper components using the process compatible with the industry-standard manufacturing technologies that are used today to produce modern integrated circuits. This means that in the very near future copper nanophotonic components will form a basis for the development of energy-efficient light sources, ultra-sensitive sensors, as well as high-performance optoelectronic processors with several thousand cores.
The discovery was made under what is known as nanophotonics – a branch of research which aims, among other things, to replace existing components in data processing devices with more modern components by using photons instead of electrons. However, while transistors can be scaled down in size to a few nanometres, the diffraction of light limits the minimum dimensions of photonic components to the size of about the light wavelength (~1 micrometre). Despite the fundamental nature of this so-called diffraction limit, one can overcome it by using metal-dielectric structures to create truly nanoscale photonic components. Firstly, most metals show a negative permittivity at optical frequencies, and light cannot propagate through them, penetrating to a depth of only 25 nanometres. Secondly, light may be converted into surface plasmon polaritons, surface waves propagating along the surface of a metal. This makes it possible to switch from conventional 3D photonics to 2D surface plasmon photonics, which is known as plasmonics. This offers the possibility of controlling light at a scale of around 100 nanometres, i.e., far beyond the diffraction limit.
Continue reading “Physicists promise a copper revolution in nanophotonics” »
Feb 28, 2016
HKUST students should consider careers in quantum computing, expert says
Posted by Karen Hurst in categories: computing, quantum physics, transportation
I have been encouraging my nephews to consider this as well.
After nearly three decades of searching for ways to build superfast computers that operate on the principles of quantum mechanics, the reality of a fully-fledged quantum computer is moving closer, says professor Andrew Yao Chi-chih, dean of the Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing.
“Quantum computing is no longer viewed as a fad, or a scientist’s pie in the sky,’’ Yao told an audience of students, faculty, and invited guests during his presentation at a Hong Kong University of Science and Technology (HKUST) 25th Anniversary Distinguished Speakers Series event on January 28. Yao also took the opportunity to explain his rationale for quantum computing to be recognised as a Great Science. “Great Science involves the intersection of different scientific disciplines to create new knowledge that allows the exploration of the previously unimaginable,’’ stressed Yao, adding that Great Science also lifts the human spirit.
Continue reading “HKUST students should consider careers in quantum computing, expert says” »
Feb 28, 2016
Australians and Robots Working Together
Posted by Karen Hurst in categories: computing, employment, government, robotics/AI
I like the concept; however, as long as “connected AI” is connected to the Net or any network infrastructure, or platform that is connected to a network and the network infrastructure/ net can be hacked; companies and consumers will still finding themselves closely monitoring the AI systems & machines which could cost companies more money and not less money. So, this does place a concern on the investments being made to develop technology that may not be fully adopted as it once was hoped.
Australians could be working alongside artificial devices and robotic devices within the next 20 years, according to a landmark report by the Federal Government’s agency for scientific research.
The CSIRO has launched a report claiming that rapid advances in automated systems and artificial intelligence meant that robotic devices would be able to perform many tasks more quickly, safely and efficiently than humans.
Continue reading “Australians and Robots Working Together” »
Feb 28, 2016
Tiny Supercapacitors Built Directly on a Chip, Making More Powerful Microchips
Posted by Shailesh Prasad in categories: computing, internet
Scientist have created tiny supercapacitators that can be embedded directly on a microchip, a game-changer that promises smaller, more powerful devices.
As the semiconductor industry begins to adjust to a new roadmap, research on microchips is being focused less on Moore’s Law (the arithmetic increase through time in the power of microchips) but instead on incremental changes related to the developing Internet of Things, such as increasing RAM or integrating gyroscopes or GPS sensors.
An important part of these changes include building more efficient energy storage devices to power these additional sensors. This development of high-performance batteries would go a long way to enable long-lived sensors and radio frequency identification (RFID) tags. The problem, however, is that miniaturized energy storage devices are not only difficult to produce but they often fail to function well with other electronics.
Continue reading “Tiny Supercapacitors Built Directly on a Chip, Making More Powerful Microchips” »
Feb 28, 2016
Your Next Phone Might Have 256GB of Storage Thanks to Samsung’s New Chip
Posted by Shailesh Prasad in categories: computing, mobile phones
I love high capacity things. So when Samsung announced it’s producing 256 GB flash storage that can be used in mobile devices, I swooned. The memory is two times faster than the previous generation of Universal Flash Storage (UFS) memory, meaning that phones will not only have greater storage capacities, but also breeze reading and writing operations.
Nonetheless, there are probably still a lot of you thinking this isn’t a huge deal. You might say that the most popular Android phones already support microSD expandable memory, or that Android 6.0 Marshmallow supports adoptive memory, making it easier for your phone to read and write to expandable storage. But that would be missing the point.
Expandable storage has always been a bandage on a much greater problem plaguing Android phones: the cost of high capacity flash memory was too high and the size was too bulky to include in older smartphones. Plus, expandable memory has never performed nearly as well as internal UFS memory. Although Android 6.0 Marshmallow supports a new adoptive memory feature that basically treats external memory as internal memory, neither of Android’s two biggest vendors, LG or Samsung, support the feature in their new smartphones.
Continue reading “Your Next Phone Might Have 256GB of Storage Thanks to Samsung’s New Chip” »
Feb 27, 2016
How CPCG Embeds Hard Problems into a Quantum Annealing Computer
Posted by Karen Hurst in categories: computing, quantum physics
https://www.youtube.com/watch?v=lNlCyD_WOps&sns=em
Improving problem solving on Quantum.
1QBit has identified a new faster and more scalable method of embedding problems into a quantum annealing processor. Here’s how the Cartesian product of complete graphs, or CPCG, embedding method works to harnesses the power of quantum computing.
Feb 26, 2016
Artificial control of exciplexes opens possibilities for new electronics
Posted by Karen Hurst in categories: computing, electronics, materials, solar power, sustainability
Demonstrating a strategy that could form the basis for a new class of electronic devices with uniquely tunable properties, researchers at Kyushu University were able to widely vary the emission color and efficiency of organic light-emitting diodes based on exciplexes simply by changing the distance between key molecules in the devices by a few nanometers.
This new way to control electrical properties by slightly changing the device thickness instead of the materials could lead to new kinds of organic electronic devices with switching behavior or light emission that reacts to external factors.
Organic electronic devices such as OLEDs and organic solar cells use thin films of organic molecules for the electrically active materials, making flexible and low-cost devices possible.
Continue reading “Artificial control of exciplexes opens possibilities for new electronics” »
Feb 25, 2016
Is this the future of work? Scientists predict which jobs will still be open to humans in 2035
Posted by Karen Hurst in categories: computing, employment, government, quantum physics, robotics/AI, security, space, virtual reality
1st; we all know in 30 years anything can change, wars can be fought & lost, natural disasters can occur, etc. However, posting for everyone’s amusement. 30 years ago which would be 1986; no one thought USSR would be broken up, 9/11 would happen creating the US Homeland Security, Lybia & Eygpt would overthrow their own leaders, that US Space missions would be outside the US Government, hacking at the levels we have today creating the CISO roles, of VR technology would exist, DNA and CRISPR would be discovered, etc.
So, who really knows what jobs will be fully automated v. not in 30 years or even created as a result of Quantum technology (Computing, Networking, Q-Dots for numerous thing that are not only technology, etc.). Just a fun article to share with everyone.
CSIRO says the Australian workplace of the future will be increasingly digitally-focused and automated, with titles such as online chaperone.
Feb 25, 2016
Quantum experiments designed by machines
Posted by Karen Hurst in categories: computing, information science, quantum physics
Very nice.
Quantum physicist Mario Krenn and his colleagues in the group of Anton Zeilinger from the Faculty of Physics at the University of Vienna and the Austrian Academy of Sciences have developed an algorithm which designs new useful quantum experiments. As the computer does not rely on human intuition, it finds novel unfamiliar solutions. The research has just been published in the journal Physical Review Letters. The idea was developed when the physicists wanted to create new quantum states in the laboratory, but were unable to conceive of methods to do so. “After many unsuccessful attempts to come up with an experimental implementation, we came to the conclusion that our intuition about these phenomena seems to be wrong. We realized that in the end we were just trying random arrangements of quantum building blocks. And that is what a computer can do as well — but thousands of times faster”, explains Mario Krenn, PhD student in Anton Zeilinger’s group and first author research.
After a few hours of calculation, their algorithm — which they call Melvin — found the recipe to the question they were unable to solve, and its structure surprised them. Zeilinger says: “Suppose I want build an experiment realizing a specific quantum state I am interested in. Then humans intuitively consider setups reflecting the symmetries of the state. Yet Melvin found out that the most simple realization can be asymmetric and therefore counterintuitive. A human would probably never come up with that solution.”
Continue reading “Quantum experiments designed by machines” »