A computer has cracked the Boolean Pythagorean triples problem — but is it really maths? http://bit.ly/1sAVMB8
Category: computing – Page 806
Could Yale physicists finally give Schrödinger’s cat a second box to play in proving the superposition of states.
Yale physicists have given Schrödinger’s famous cat a second box to play in, and the result may help further the quest for reliable quantum computing.
Schrödinger’s cat is a well-known paradox that applies the concept of superposition in quantum physics to objects encountered in everyday life. The idea is that a cat is placed in a sealed box with a radioactive source and a poison that will be triggered if an atom of the radioactive substance decays. Quantum physics suggests that the cat is both alive and dead (a superposition of states), until someone opens the box and, in doing so, changes the quantum state.
This hypothetical experiment, envisioned by one of the founding fathers of quantum mechanics in 1935, has found vivid analogies in laboratories in recent years. Scientists can now place a wave-packet of light composed of hundreds of particles simultaneously in two distinctly different states. Each state corresponds to an ordinary (classical) form of light abundant in nature.
Non-diffracting Bessel vortex beams exhibit diverse propagation regimes in glass that can be observed with a novel imaging strategy.
High-power femtosecond pulses have become a key tool in processing of transparent materials (e.g., glass and sapphire) for the present and the next generation of consumer electronics.1 Associated major industrial challenges include high-quality and high-speed cutting of screen glass for smartphones, camera windows, or drilling of through-vias (vertical interconnect access) in interposers for the circuitry of 3D electronic chips. Ultrafast laser pulses (on picosecond or femtosecond timescales) allow for structuring transparent materials with high levels of accuracy. When the laser pulses propagate into the transparent dielectrics, they usually undergo high distortions.2 These distortions arise because of the nonlinear Kerr self-focusing effect and because of the interaction of the pulse with the plasma, which the pulses generate in the material. The propagation is therefore highly nonlinear and prevents uniform energy deposition along the beam propagation.
Engineers at the University of California San Diego have developed the first flexible wearable device capable of monitoring both biochemical and electric signals in the human body. The Chem-Phys patch records electrocardiogram (EKG) heart signals and tracks levels of lactate, a biochemical that is a marker of physical effort, in real time. The device can be worn on the chest and communicates wirelessly with a smartphone, smart watch or laptop. It could have a wide range of applications, from athletes monitoring their workouts to physicians monitoring patients with heart disease.
Nanoengineers and electrical engineers at the UC San Diego Center for Wearable Sensors worked together to build the device, which includes a flexible suite of sensors and a small electronic board. The device also can transmit the data from biochemical and electrical signals via Bluetooth.
Nanoengineering professor Joseph Wang and electrical engineering professor Patrick Mercier at the UC San Diego Jacobs School of Engineering led the project, with Wang’s team working on the patch’s sensors and chemistry, while Mercier’s team worked on the electronics and data transmission. They describe the Chem-Phys patch in the May 23 issue of Nature Communications.
Love this; Congrats to Michelle Simmons and her work on QC — Superstar females in STEM.
For her world-leading research in the fabrication of atomic-scale devices for quantum computing, UNSW Australia’s Scientia Professor Michelle Simmons has been awarded a prestigious Foresight Institute Feynman Prize in Nanotechnology.
Two international Feynman prizes, named in honour of the late Nobel Prize winning American physicist Richard Feynman, are awarded each year in the categories of theory and experiment to researchers whose work has most advanced Feynman’s nanotechnology goal of molecular manufacturing.
Professor Simmons, director of the UNSW-based Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology, won the experimental prize for her work in “the new field of atomic-electronics, which she created”.
AR for plastic surgery.
ILLUSIO, the next generation in computer imaging for plastic surgery, will be presenting at the 2016 Virtual Reality Summit in Seoul, South Korea on June 22. The conference is expected to attract thousands of people interested in the latest applications for virtual reality and augmented reality.
ILLUSIO CEO Ethan Winner will present the Company’s use of augmented reality for plastic surgery imaging. ILLUSIO combines the latest in 3D augmented reality technology with real-time morphing animation, providing a platform for plastic surgeons and their patients to visually communicate.
The proprietary artistic adapters and deformers allow surgeons to easily manipulate virtual breast models to quickly replicate any real life breast characteristics. Patients can now see themselves and their future bodies in real time. With the ILLUSIO imaging system, she can turn side-to-side and in real-time see herself with all of the size and shape options that her surgeon creates…
Got to luv this.
Is this brand new type of battery the key to clean energy and off-grid electricity?
Lithium-ion batteries are having a moment. After becoming the de facto battery in laptops and cell phones over the years, they’re now starting to power electric cars (like those made by Tesla) and plug into the power grid.
But lithium-ion batteries aren’t the only battery type in town. Some brand new battery varieties could actually be more promising than lithium-ion when it comes to storing energy generated by solar panels or used to power remote villages in Africa, India, and Asia.
Nice.
/EINPresswire.com/ — SAN JOSE, CA — (Marketwired) — 05/24/16 — UltraMemory Inc. (UltraMemory) has selected NanoSpice™ and NanoSpice Giga™ from ProPlus Design Solutions, Inc., the leading technology provider of giga-scale parallel SPICE simulation, SPICE modeling solutions and Design-for-Yield (DFY) applications, to simulate its super-broadband, super large-scale memory design.
UltraMemory is developing innovative 3D DRAM chip, which includes Through Chip Interface (TCI), enabling low-cost and low-power wireless communication between stacked DARM when compared to TSV technology.
Highly accurate and high-capacity SPICE simulation was necessary because it needed to simulate several DRAM chips with analog functions. UltraMemory’s decision to adopt NanoSpice, a high-performance parallel SPICE simulator, and NanoSpice Giga, the industry’s only GigaSpice simulator, came after an extensive evaluation of commercial SPICE and FastSPICE circuit simulators. NanoSpice and NanoSpice Giga have been integrated in UltraMemory’s existing design flows to replace other SPICE and FastSPICE simulators to provide full circuit simulation solutions from small block simulation to full-chip verification.
Nice.
Sandia National Laboratories has taken a first step toward creating a practical quantum computer, able to handle huge numbers of computations instantaneously.
Here’s the recipe:
A “donor” atom propelled by an ion beam is inserted very precisely in microseconds into an industry-standard silicon substrate.