Menu

Blog

Archive for the ‘computing’ category: Page 543

Apr 19, 2020

Quantum Computing Milestone: Researchers Compute With ‘Hot’ Silicon Qubits

Posted by in categories: computing, quantum physics

Two research groups say they’ve independently built quantum devices that can operate at temperatures above 1 Kelvin—15 times hotter than rival technologies can withstand.

The ability to work at higher temperatures is key to scaling up to the many qubits thought to be required for future commercial-grade quantum computers.

Continue reading “Quantum Computing Milestone: Researchers Compute With ‘Hot’ Silicon Qubits” »

Apr 19, 2020

One step closer to commercialisation: Intel’s big breakthrough will allow quantum computers to work at warm temperatures

Posted by in categories: computing, particle physics, quantum physics, space

Modern circuitry operates in binaries – switches can either be 0 or 1 – which in turn restricts their computing power to discrete values. Qubits, on the other hand, can hold both values depending on their state, and derives this property from quantum physics. Qubits are modelled on subatomic particles like electrons, giving them an edge over Boolean systems. Quantum computers are difficult to operate, in part due its bulk, power consumption, hardware complexity, and reliance on low temperatures.

Intel’s “hot” qubit technology ought to address the latter concern. These qubits are capable of operating at temperatures higher than 1 Kelvin (−458F / −273K), which is the warmest temperature that quantum computers till now were able to tolerate. Computers in outer space operate at 3 Kelvin. The practical benefits of this breakthrough will manifest itself if Intel can combine quantum hardware and control circuitry on the same chip. It has hitherto been difficult for researchers to separate control electronics for qubits from the qubits themselves owing to the frigid temperature that the latter require to function.

Intel will be hoping that this development will help it fabricate more efficient chips that meld the two parts on the same chip without compromising on fidelity. The commercialization of quantum computing still remains a pipe dream, but large corporations like Google and Intel are paving the way for improvements that could make quantum computers more viable. Even so, make sure you’re wearing a scarf before you go to collect your first quantum computer.

Apr 19, 2020

Indian Army has disinfectant drone, UV gun that kills virus in seconds in its Covid arsenal

Posted by in categories: 3D printing, biotech/medical, computing, drones

The cost of the sanitiser would be Rs 800, and the Army can turn out 10 pieces a day.

The third innovation is a 3D-printed mask priced at Rs 1,200 apiece. Other products being devised include thermal scanners and anti-aerosalination boxes to keep doctors safe. The boxes are made up of transparent acrylic sheets and kept over patients to protect doctors and other healthcare workers from infection. Holes cut into the box help medical staff administer treatment to the patient without coming into direct contact.

The Army is just one of several sections across Indian society that are trying to chip in for the country’s battle against coronavirus, from scientists who have banded together to bust myths to IITians churning out cost-effective and innovative solutions to ease the burden on the healthcare framework.

Apr 19, 2020

Boson particles discovery provides insights for quantum computing

Posted by in categories: computing, military, particle physics, quantum physics

Scientists found that a class of particles known as bosons can behave as an opposite class of particles called fermions, when forced into a line.

The research, conducted at Penn State University and funded in part by the Army Research Office, an element of U.S. Army Combat Capabilities Development Command’s Army Research Laboratory, found that when the internal interactions among bosons in a one-dimensional gas are very strong, their velocity distribution transforms into that of a gas of non-interacting fermions when they expand in one dimension. The research is published in the journal Science.

“The performance of atomic clocks, quantum computers and quantum systems rely upon the proper curation of the properties of the chosen system,” said Dr. Paul Baker, program manager, atomic and molecular physics at ARO. “This research effort demonstrates that the system statistics can be altered by properly constraining the dimensions of the system. In addition to furthering our understanding of foundational principles, this discovery could provide a method for dynamically switching a system from bosonic to fermionic to best meet the military need.”

Apr 18, 2020

Israel, US researchers create ‘mini Human-on-a-Chip’ to speed up drug testing

Posted by in categories: bioengineering, biotech/medical, computing, neuroscience

Two new studies by researchers in Tel Aviv University and Harvard University on the subject were published in the journal Nature Biomedical Engineering on Monday.

Organs-on-a-chip were first developed in 2010 at Harvard University. Then, scientists took cells from a specific human organ — heart, brain, kidney and lung — and used tissue engineering techniques to put them in a plastic cartridge, or the so called chip. Despite the use of the term chip, which often refers to microchips, no computer parts are involved here.

Get The Start-Up Israel’s Daily Start-Up by email and never miss our top stories Free Sign Up.

Apr 18, 2020

Focus: Acoustic Diode Hits the Perfect Note

Posted by in category: computing

A waveguide structure allows a specific type of sound wave to travel in only one direction with near-perfect transmission and without a power source required.

Apr 17, 2020

Legendary Physicist Stephen Wolfram Is Modeling Our Universe, and He Needs Your Help

Posted by in categories: biotech/medical, business, computing

Between the summer of 1665 and the spring of 1667, Isaac Newton developed his theories on calculus, optics, and the laws of motion and gravity. He was quarantining during the Bubonic Plague and found the extra time on his hands gave him the freedom to pursue intellectual endeavors his day-to-day duties may have otherwise squandered.

Nearly 400 years later, history could be repeating itself.

With decades of work at the intersection of time, space, and elementary particles under his belt, Stephen Wolfram believes he’s close to discovering how the universe works—or, at least, the fundamental law of physics that makes all of our other laws of physics tick. So the 60-year-old computer scientist, businessman, and physicist has launched “The Wolfram Physics Project” to crowdsource that work with some of the best minds in the world.

Apr 17, 2020

Landmark Computer Science Proof Cascades Through Physics and Math

Posted by in categories: computing, mathematics, quantum physics, science

Computer scientists established a new boundary on computationally verifiable knowledge. In doing so, they solved major open problems in quantum mechanics and pure mathematics.

Apr 17, 2020

Google will add Zoom-like gallery view to Meet and will let Meet users take calls from Gmail

Posted by in categories: biotech/medical, business, computing, education

Google plans to add a Zoom-like gallery view to its business- and education-focused Meet videoconferencing service and let users start calls and join meetings right from Gmail, Google’s GM and VP of G Suite Javier Soltero told Reuters in an interview. The additions come amid huge growth for Meet as families, students, and workers use the service while at home due to the COVID-19 pandemic.

The upcoming gallery view will let users display up to 16 meeting participants in one frame, according to Reuters. That functionality is coming later this month, said Soltero. Zoom’s gallery view, by contrast, lets you see the thumbnails of up to 49 people in one screen, if you have a powerful enough CPU to display them all.

Apr 17, 2020

Nanosize Tin ‘Bubbles’ Could Provide Low-Cost Way to Generate EUV Light

Posted by in categories: computing, nanotechnology

Scientists at Tokyo Institute of Technology (Tokyo Tech) have generated low-cost extreme ultraviolet (EUV) light by creating tin thin-film spheres using a polymer electrolyte “soap bubble” as a template and irradiating it with a laser.

#EUV #photonics


The team from Tokyo Tech, working with colleagues from University College Dublin, set out to find efficient, scalable, low-cost laser targets that could be used to generate EUV. The scientists created a tin-coated microcapsule or “bubble” — a low-density structure weighing as little as 4.2 nanograms and with a high level of controllability. For the bubble, they used polymer electrolytes, which are a dissolution of salts in a polymer matrix. The salts act as surfactants to stabilize the bubble.

Continue reading “Nanosize Tin ‘Bubbles’ Could Provide Low-Cost Way to Generate EUV Light” »