Menu

Blog

Archive for the ‘chemistry’ category: Page 226

Dec 21, 2020

New nanomaterial helps obtain hydrogen from a liquid energy carrier, in a key step toward a stable and clean fuel source

Posted by in categories: chemistry, economics, nanotechnology, particle physics, sustainability, transportation

Hydrogen is a sustainable source of clean energy that avoids toxic emissions and can add value to multiple sectors in the economy including transportation, power generation, metals manufacturing, among others. Technologies for storing and transporting hydrogen bridge the gap between sustainable energy production and fuel use, and therefore are an essential component of a viable hydrogen economy. But traditional means of storage and transportation are expensive and susceptible to contamination. As a result, researchers are searching for alternative techniques that are reliable, low-cost and simple. More-efficient hydrogen delivery systems would benefit many applications such as stationary power, portable power, and mobile vehicle industries.

Now, as reported in the journal Proceedings of the National Academy of Sciences, researchers have designed and synthesized an effective material for speeding up one of the limiting steps in extracting from alcohols. The material, a , is made from tiny clusters of nickel anchored on a 2-D substrate. The team led by researchers at Lawrence Berkeley National Laboratory’s (Berkeley Lab) Molecular Foundry found that the catalyst could cleanly and efficiently accelerate the reaction that removes hydrogen atoms from a liquid chemical carrier. The material is robust and made from earth-abundant metals rather than existing options made from precious metals, and will help make hydrogen a viable energy source for a wide range of applications.

“We present here not merely a catalyst with higher activity than other nickel catalysts that we tested, for an important renewable energy fuel, but also a broader strategy toward using affordable metals in a broad range of reactions,” said Jeff Urban, the Inorganic Nanostructures Facility director at the Molecular Foundry who led the work. The research is part of the Hydrogen Materials Advanced Research Consortium (HyMARC), a consortium funded by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy Hydrogen and Fuel Cell Technologies Office (EERE). Through this effort, five national laboratories work towards the goal to address the scientific gaps blocking the advancement of solid hydrogen storage materials. Outputs from this work will directly feed into EERE’s H2@Scale vision for affordable hydrogen production, storage, distribution and utilization across multiple sectors in the economy.

Dec 21, 2020

Hong Kong scientists claim ‘broad-spectrum’ antiviral breakthrough

Posted by in categories: biotech/medical, chemistry

Hong Kong scientists claim they have made a potential breakthrough discovery in the fight against infectious diseases—a chemical that could slow the spread of deadly viral illnesses.

A team from the University of Hong Kong described the newly discovered chemical as “highly potent in interrupting the life cycle of diverse viruses” in a study published this month in the journal Nature Communications.

The scientists told AFP Monday that it could one day be used as a broad-spectrum antiviral for a host of —and even for viruses that have yet to emerge—if it passes clinical trials.

Dec 20, 2020

Epigenetic Aging: How old is your DNA?

Posted by in categories: biotech/medical, chemistry, genetics, life extension

Dr. Steve Horvath, a professor of genetics and biostatistics at UCLA, has found a way to measure biological aging – a type of “clock” – based on the methylation pattern of an organism’s genome. Methylations are biochemical processes that modify the activity of a DNA segment without changing its sequence – a type of epigenetic change. This video primer explains the basics of epigenetic clocks, the topic of our interview with Dr. Steve Horvath, coming soon!

Get the show notes here:
https://www.foundmyfitness.com/episodes/epigenetic-clock/

Continue reading “Epigenetic Aging: How old is your DNA?” »

Dec 20, 2020

Chemical Research Breakthrough Could Transform Clean Energy Technology

Posted by in categories: chemistry, solar power, sustainability

However, a breakthrough by researchers at UVA’s College and Graduate School of Arts & Sciences, the California Institute of Technology and the U.S. Department of Energy’s Argonne National Laboratory, Lawrence Berkeley National Laboratory and Brookhaven National Laboratory could eliminate a critical obstacle from the process, a discovery that represents a giant stride toward a clean-energy future.

One way to harness solar energy is by using solar electricity to split water molecules into oxygen and hydrogen. The hydrogen produced by the process is stored as fuel, in a form that can be transferred from one place to another and used to generate power upon demand. To split water molecules into their component parts, a catalyst is necessary, but the catalytic materials currently used in the process, also known as the oxygen evolution reaction, are not efficient enough to make the process practical.

Dec 20, 2020

Smellicopter Tiny Drone Uses Moth Antenna to Find Smells

Posted by in categories: chemistry, drones, robotics/AI

Meet the Smellicopter is a tiny drone developed by scientists at the University of Washington, capable of detecting smells like gas leaks, explosives, or even the survivors of a natural disaster. This amazing, obstacle avoiding UAV doesn’t use a man-made sensor to smell: it uses a moth antenna to navigate towards an odor.

A research paper published in IOP Science describes Smellicopter as “A bio-hybrid odor-guided autonomous palm-sized air vehicle.” The advantages to such a vehicle are clear: the tiny drone can travel in places that humans cannot or should not: the rubble of buildings after a natural disaster; zones where chemical leaks or spills may have occurred; or conflict zones that may contain chemical or explosive weapons.

Continue reading “Smellicopter Tiny Drone Uses Moth Antenna to Find Smells” »

Dec 20, 2020

A molecule that works like a nanobattery

Posted by in categories: chemistry, computing, particle physics

How do molecular catalysts—molecules which, like enzymes, can trigger or accelerate certain chemical reactions—function, and what effects do they have? A team of chemists at the University of Oldenburg has come closer to the answers using a model molecule that functions like a molecular nanobattery. It consists of several titanium centers linked to each other by a single layer of interconnected carbon and nitrogen atoms. The seven-member research team recently published its findings, which combine the results of three multi-year Ph.D. research projects, in ChemPhysChem. The physical chemistry and chemical physics journal featured the basic research from Oldenburg on its cover.

To gain a better understanding of how the molecule works, the researchers, headed by first authors Dr. Aleksandra Markovic and Luca Gerhards and corresponding author Prof. Dr. Gunther Wittstock, performed electrochemical and spectroscopic experiments and used the university’s high-performance computing cluster for their calculations. Wittstock sees the publication of the paper as a “success story” for both the Research Training Groups within which the Ph.D. projects were conducted and for the university’s computing cluster. “Without the high-performance computing infrastructure, we would not have been able to perform the extensive calculations required to decipher the behavior of the molecule,” says Wittstock. “This underlines the importance of such computing clusters for current research.”

In the paper, the authors present the results of their analysis of a molecular structure, the prototype for which was the result of an unexpected chemical reaction first reported by the University of Oldenburg’s Chemistry Department in 2006. It is a highly complex molecular structure in which three titanium centers (commonly referred to in high school lessons as titanium ions) are connected to each other by a bridging ligand consisting of carbon and nitrogen. Such a compound would be expected to be able to accept and release several electrons through the exchange of electrons between the metal centers among other reasons.

Dec 19, 2020

Common pipe alloy can form cancer-causing chemical in drinking water

Posted by in categories: biotech/medical, chemistry, food, genetics, health

Rusted iron pipes can react with residual disinfectants in drinking water distribution systems to produce carcinogenic hexavalent chromium in drinking water, reports a study by engineers at UC Riverside.

Chromium is a metal that occurs naturally in the soil and groundwater. Trace amounts of trivalent eventually appear in the and food supply and are thought to have neutral effects on health. Chromium is often added to iron to make it more resistant to corrosion.

Certain can change chromium atoms into a hexavalent form that creates cancer-causing genetic mutations in cells. This carcinogenic form of chromium was at the heart of a lawsuit in California’s Central Valley by Erin Brockovich, which became the subject of an Oscar-winning movie.

Dec 17, 2020

Magdrive secures Seed funding for new propulsion system which could take us to the stars

Posted by in categories: chemistry, satellites

A startup with a new type of spacecraft propulsion system could make the interplanetary travel seen in Star Trek a reality. Magdrive has just closed a £1.4M seed round led by Founders Fund, an early investor in SpaceX, backed by Luminous Ventures, 7percent Ventures, and Entrepreneur First.

Magdrive is developing a next generation of spacecraft propulsion for small satellites. The startup says its engine’s thrust and efficiency are a “generational leap” ahead of any other electrical thrusters, opening up the space industry to completely new types of missions that were not possible before, without resorting to much larger, expensive and heavier chemical thrusters. It says its engine would make fast and affordable interplanetary space travel possible, as well as operations in Very Low Earth orbit. The engine would also make orbital manufacturing far more possible than previously.

Existing electrical solutions are very efficient but have very low thrust. Chemical thrusters have high thrust but lack efficiency and are hazardous and expensive to handle. Magdrive says its engine can deliver both high thrust and high efficiency in one system.

Dec 16, 2020

Chemical Compounds in Foods Can Inhibit a Key SARS-CoV-2 Enzyme

Posted by in categories: biotech/medical, chemistry, food

““Green tea has five tested chemical compounds that bind to different sites in the pocket on Mpro, essentially overwhelming it to inhibit its function,” Xie said. “Muscadine grapes contain these inhibitory chemicals in their skins and seeds. Plants use these compounds to protect themselves, so it is not surprising that plant leaves and skins contain these beneficial compounds.””

Glad I picked up a refill on my resveratrol this week!


Green tea, muscadine grape and dark chocolate chemical compounds inhibit an important SARS-CoV-2 enzyme.

Continue reading “Chemical Compounds in Foods Can Inhibit a Key SARS-CoV-2 Enzyme” »

Dec 15, 2020

Salt-tolerant bacteria with an appetite for sludge make biodegradable plastics

Posted by in categories: biotech/medical, chemistry, engineering

The United States generates seven million tons of sewage sludge annually, enough to fill 2, 500 Olympic-sized swimming pools. While a portion of this waste is repurposed for manure and other land applications, a substantial amount is still disposed of in landfills. In a new study, Texas A&M University researchers have uncovered an efficient way to use leftover sludge to make biodegradable plastics.

In the September issue of the journal American Chemical Society (ACS) Omega, the researchers report that the bacterium Zobellella denitrificans ZD1, found in mangroves, can consume sludge and wastewater to produce polyhydroxybutyrate, a type of biopolymer that can be used in lieu of petroleum-based plastics. In addition to reducing the burden on landfills and the environment, the researchers said Zobellella denitrificans ZD1 offers a way to cut down upstream costs for bioplastics manufacturing, a step toward making them more competitively priced against regular plastics.

“The price of raw materials to cultivate biopolymer-producing bacteria accounts for 25–45% of the total production cost of manufacturing bioplastics. Certainly, this cost can be greatly reduced if we can tap into an alternate resource that is cheaper and readily obtainable,” said Kung-Hui (Bella) Chu, professor in the Zachry Department of Civil and Environmental Engineering. “We have demonstrated a potential way to use municipal wastewater-activated sludge and agri-and aqua-culture industrial wastewater to make biodegradable plastics. Furthermore, the does not require elaborate sterilization processes to prevent contamination from other microbes, further cutting down operating and production costs of bioplastics.”