Menu

Blog

Archive for the ‘chemistry’ category: Page 225

Dec 28, 2020

University of Colorado Boulder research team discovers compound that could aid in fight against antibiotic-resistant bacteria

Posted by in categories: biotech/medical, chemistry

CU Boulder researchers found a chemical compound that can break through cell membranes and potentially fight antibiotic-resistant bacteria.

Dec 27, 2020

Hydrogen production with artificial photosynthesis and polymers

Posted by in categories: chemistry, life extension, solar power, sustainability

German scientists are researching a method to produce hydrogen using light and photoactive compounds on an organic chemical basis.


Hydrogen is considered to be one of the alternative energy sources of the future. So far, however, the costly and energy-intensive production process has been a major problem with regard to the environmental friendliness of this substance, which is in itself CO2 neutral. For this reason, increasing numbers of scientists around the world are researching other methods of producing hydrogen: from algae, for example. (IO reported). Scientists in Germany at the Friedrich Schiller University, the Leibniz Institute for Photonic Technologies (Leibniz IPHT) and the University of Ulm have taken inspiration from nature for their method of producing hydrogen.

To do so, the team from the “CataLight” Collaborative Research Center at the Universities of Jena and Ulm has combined new organic dyes with non-precious metal catalyst molecules that release gaseous hydrogen in water when irradiated with light. This substitute has shown a remarkable impact in terms of longevity and effect after excitation by visible light, they write in their study, published in Chemistry – A European Journal.

Continue reading “Hydrogen production with artificial photosynthesis and polymers” »

Dec 27, 2020

Power plant on a chip

Posted by in categories: chemistry, computing, engineering

Scientists at Lehigh University are developing a tiny generating plant, housed on a silicon chip, that they believe can produce enough hydrogen to run power-consuming portable devices.

The amount of hydrogen produced was small, but it was enough to demonstrate that the Lehigh project is feasible. Given time the Lehigh group believes they will develop a working generating plant, housed on a silicon chip that produces sufficient quantities of hydrogen to run different types of power consuming portable devices.

‘About 10 years ago people starting thinking: ‘can we take the same fabrication methods for silicon chips and instead of using them for electronics, use them for something else? said Mayuresh Kothare, assistant professor of chemical engineering.

Dec 25, 2020

Making jet fuel out of carbon dioxide

Posted by in categories: business, chemistry, particle physics, sustainability, transportation

A team of researchers affiliated with several institutions in the U.K. and one in Saudi Arabia has developed a way to produce jet fuel using carbon dioxide as a main ingredient. In their paper published in the journal Nature Communications, the group describes their process and its efficiency.

As scientists continue to look for ways to reduce the amount of emitted into the atmosphere, they have increasingly focused on certain business sectors. One of those sectors is the , which accounts for approximately 12% of transportation-related carbon dioxide emissions. Curbing in the aviation industry has proved to be challenging due to the difficulty of fitting heavy batteries inside of aircraft. In this new effort, the researchers have developed a that can be used to produce carbon-neutral jet fuel.

The researchers used a process called the organic combustion method to convert carbon dioxide in the air into jet fuel and other products. It involved using an iron catalyst (with added potassium and manganese) along with hydrogen, citric acid and carbon dioxide heated to 350 degrees C. The process forced the apart from the oxygen atoms in CO2 molecules, which then bonded with hydrogen atoms, producing the kind of hydrocarbon molecules that comprise liquid jet fuel. The process also resulted in the creation of water molecules and other products.

Dec 25, 2020

Goldilocks and the three quantum dots: Just right for peak solar panel performance

Posted by in categories: chemistry, quantum physics, solar power, sustainability

Scientists in Australia have developed a process for calculating the perfect size and density of quantum dots needed to achieve record efficiency in solar panels.

Quantum dots, man-made nanocrystals 100, 000 times thinner than a sheet of paper, can be used as sensitisers, absorbing infrared and and transferring it to other molecules.

This could enable new types of to capture more of the light spectrum and generate more electrical current, through a process of ‘light fusion’ known as photochemical upconversion.

Dec 24, 2020

Atomic-scale nanowires can now be produced at scale

Posted by in categories: chemistry, nanotechnology, particle physics, robotics/AI, space travel

Researchers from Tokyo Metropolitan University have discovered a way to make self-assembled nanowires of transition metal chalcogenides at scale using chemical vapor deposition. By changing the substrate where the wires form, they can tune how these wires are arranged, from aligned configurations of atomically thin sheets to random networks of bundles. This paves the way to industrial deployment in next-gen industrial electronics, including energy harvesting, and transparent, efficient, even flexible devices.

Electronics is all about making things smaller—smaller features on a chip, for example, means more computing power in the same amount of space and better efficiency, essential to feeding the increasingly heavy demands of a modern IT infrastructure powered by machine learning and artificial intelligence. And as devices get smaller, the same demands are made of the intricate wiring that ties everything together. The ultimate goal would be a wire that is only an atom or two in thickness. Such would begin to leverage completely different physics as the electrons that travel through them behave more and more as if they live in a one-dimensional world, not a 3D one.

In fact, scientists already have materials like carbon nanotubes and transition metal chalcogenides (TMCs), mixtures of transition metals and group 16 elements which can self-assemble into atomic-scale nanowires. The trouble is making them long enough, and at scale. A way to mass produce nanowires would be a game changer.

Dec 24, 2020

AI-Designed Serotonin Sensor May Help Scientists Study Sleep and Mental Health

Posted by in categories: bioengineering, biotech/medical, chemistry, genetics, health, robotics/AI

Summary: Artificial intelligence technology redesigned a bacterial protein that helps researchers track serotonin in the brain in real-time.

Source: NIH

Serotonin is a neurochemical that plays a critical role in the way the brain controls our thoughts and feelings. For example, many antidepressants are designed to alter serotonin signals sent between neurons.

Continue reading “AI-Designed Serotonin Sensor May Help Scientists Study Sleep and Mental Health” »

Dec 24, 2020

Nanoplastics alter intestinal microbiome and threaten human health

Posted by in categories: biotech/medical, chemistry, food, health, nanotechnology

“Once they are ingested, up to 90% of the plastic fragments that reach the intestine are excreted. However, one part is fragmented into nanoplastics which are capable, due to their small size and molecular properties, to penetrate the cells and cause harmful effects. The study establishes that alterations in food absorption have been described, as well as inflammatory reactions in the intestinal walls, changes in the composition and functioning of the gut microbiome, effects on the body’s metabolism and ability to produce, and lastly, alterations in immune responses. The article alerts about the possibility of a long-term exposure to plastic, accumulated throughout generations, could give way to unpredictable changes even in the very genome, as has been observed in some animal models.”


We live in a world invaded by plastic. Its role as a chemically stable, versatile and multi-purpose fostered its massive use, which has finally translated into our current situation of planetary pollution. Moreover, when plastic degrades it breaks into smaller micro and nanoparticles, becoming present in the water we drink, the air we breathe and almost everything we touch. That is how nanoplastics penetrate the organism and produce side effects.

A revised study led by the Universitat Autónoma de Barcelona (UAB), the CREAF and the Centre for Environmental and Marine Studies (CESAM) at the University of Aviero, Portugal, and published in the journal Science Bulletin, verifies that the nanoplastics affect the composition and diversity of our intestinal microbiome and that this can cause damage to our health. This effect can be seen in both vertebrates and invertebrates, and has been proved in situations in which the exposure is widespread and prolonged. Additionally, with alteration of the gut microbiome come alterations in the immune, endocrine and and therefore, although not enough is known about the specific physiological mechanisms, the study alerts that stress to the gut microbiome could alter the health of humans.

Continue reading “Nanoplastics alter intestinal microbiome and threaten human health” »

Dec 22, 2020

Diamonds are not just for jewelry anymore

Posted by in categories: chemistry, sustainability, transportation

When it comes to the semiconductor industry, silicon has reigned as king in the electronics field, but it is coming to the end of its physical limits.

To more effectively power the , locomotives and even , Lawrence Livermore National Laboratory (LLNL) scientists are turning to diamond as an ultra-wide bandgap semiconductor.

Diamond has been shown to have superior carrier mobility, break down electric field and thermal conductivity, the most important properties to power . It became especially desirable after the development of a chemical vapor deposition (CVD) process for growth of high-quality single crystals.

Dec 21, 2020

Artificial intelligence solves Schrödinger’s equation

Posted by in categories: chemistry, information science, mathematics, particle physics, quantum physics, robotics/AI, space

A team of scientists at Freie Universität Berlin has developed an artificial intelligence (AI) method for calculating the ground state of the Schrödinger equation in quantum chemistry. The goal of quantum chemistry is to predict chemical and physical properties of molecules based solely on the arrangement of their atoms in space, avoiding the need for resource-intensive and time-consuming laboratory experiments. In principle, this can be achieved by solving the Schrödinger equation, but in practice this is extremely difficult.

Up to now, it has been impossible to find an exact solution for arbitrary molecules that can be efficiently computed. But the team at Freie Universität has developed a deep learning method that can achieve an unprecedented combination of accuracy and computational efficiency. AI has transformed many technological and scientific areas, from computer vision to materials science. “We believe that our approach may significantly impact the future of quantum ,” says Professor Frank Noé, who led the team effort. The results were published in the reputed journal Nature Chemistry.

Central to both quantum chemistry and the Schrödinger equation is the —a mathematical object that completely specifies the behavior of the electrons in a molecule. The wave function is a high-dimensional entity, and it is therefore extremely difficult to capture all the nuances that encode how the individual electrons affect each other. Many methods of quantum chemistry in fact give up on expressing the wave function altogether, instead attempting only to determine the energy of a given molecule. This however requires approximations to be made, limiting the prediction quality of such methods.