Menu

Blog

Archive for the ‘chemistry’ category: Page 190

Jul 10, 2022

Peter Tse — What Makes Brains Conscious?

Posted by in categories: chemistry, mathematics, neuroscience, physics

Everything we know, think and feel—everything!—comes from our brains. But consciousness, our private sense of inner awareness, remains a mystery. Brain activities—spiking of neuronal impulses, sloshing of neurochemicals—are not at all the same thing as sights, sounds, smells, emotions. How on earth can our inner experiences be explained in physical terms?

Free access to Closer to Truth’s library of 5,000 videos: http://bit.ly/376lkKN

Continue reading “Peter Tse — What Makes Brains Conscious?” »

Jul 10, 2022

Liver disease in kids has been rising for years. A new study points to why

Posted by in categories: biotech/medical, chemistry

It’s the first comprehensive study to look at the association between endocrine-disrupting chemicals, including PFAS, and rates of non-alcoholic fatty liver disease in kids.

Jul 9, 2022

What is a Thought? How the Brain Creates New Ideas | Henning Beck | TEDxHHL

Posted by in categories: biotech/medical, business, chemistry, computing, neuroscience

How does the human brain work and how is it different from computers? If you think this is too complex to explain in a few minutes, you will be surprised. In this energetic and insightful talk, neuro-scientist Dr. Henning Beck gives insights into thought processes and tells you how you can create new ideas.

Dr. Henning Beck, neuroscientist and author, supports businesses to use brain-based approaches in order to develop innovative and efficient workflows. He studied biochemistry in Tübingen from 2003 to 2008. After his diploma thesis, he started his research at the Hertie Institute for Clinical Brain Research and intensified his work at the Institute of Physiological Chemistry at the University of Ulm. Supported by a PhD scholarship granted by the Hertie Foundation he did his doctorate at the Graduate School of Cellular & Molecular Neuroscience in Tübingen. He expanded his scientific expertise by an International Diploma in Project Management at the University of California, Berkeley in 2013. Until 2014, he worked for start-ups in the San Francisco Bay Area to develop creative workspace designs and advanced communication styles based on neuroscientific principles.

Continue reading “What is a Thought? How the Brain Creates New Ideas | Henning Beck | TEDxHHL” »

Jul 9, 2022

Biochemists use enzymes to change how brain cells communicate with each other

Posted by in categories: biological, chemistry, neuroscience

As you’re reading this sentence, the cells in your brain, called neurons, are sending rapid-fire electrical signals between each other, transmitting information. They’re doing so via tiny, specialized junctions between them called synapses.

There are many different types of that form between neurons, including “excitatory” or “inhibitory,” and the exact mechanisms by which these structures are generated remain unclear to scientists. A Colorado State University biochemistry lab has uncovered a major insight into this question by showing that the types of chemicals released from synapses ultimately guide which kinds of synapses form between neurons.

Soham Chanda, assistant professor in the Department of Biochemistry and Molecular Biology, led the study published in Nature Communications that demonstrates the possibility of changing the identity of synapses between neurons, both in vitro and in vivo, through enzymatic means. The other senior scientists who contributed to the project were Thomas Südhof of Stanford University and Matthew Xu-Friedman of the University at Buffalo.

Jul 8, 2022

Prospecting for interstellar oil

Posted by in categories: chemistry, cosmology

We have developed a new method to look for carbon compounds in space, akin to prospecting for oil on Earth. Our method is published in Monthly Notices of the Royal Astronomical Society.

Between the stars lie vast amounts of interstellar gas and , spread thinly throughout our galaxy. The dust can contain compounds of carbon. When it does we call it carbonaceous interstellar dust. This is an important reservoir for the in space. The continual cycle of material between the stars and the gas in the interstellar medium in our galaxy leads to the delivery of organic molecules to newly forming planetary systems.

A special sub-class of organic molecules called prebiotic molecules are thought to play a major role in the formation of life on Earth. Such prebiotic molecules are likely preserved in carbonaceous interstellar dust that are gathered together in planetesimals, in an early stage of planetary formation. The in such environments may determine the planet’s hospitality to the formation of life there. Therefore, it is important to understand the life cycle of carbonaceous interstellar dust to study this possibility further.

Jul 8, 2022

What Does GABA Do in the Brain?

Posted by in categories: biotech/medical, chemistry, neuroscience, sex

Despite the fact that sex is a basic instinct and a near-universal experience, we know remarkably little about it. And so, this week, we’re teaming up with our friends at Futurism, oracles of all things science, technology and medicine, to look at the past, present and future of pleasure from a completely scientific perspective.

For a while now, the neurotransmitter dopamine has been seen as the conductor of good feelings. It’s the subject of love songs, the seductress of biohackers and the ostensible “pleasure chemical.” But as research continues to uncover more about our brain’s reward system, dopamine is beginning to look less like the maestro and more like a member of the band.

Jul 8, 2022

Nano-rust: Smart additive for autonomous temperature control

Posted by in categories: biotech/medical, chemistry, food, nanotechnology, robotics/AI

The right temperature ensures the success of technical processes, the quality of food and medicines, or affects the lifetime of electronic components and batteries. Temperature indicators enable to detect (un)desired temperature exposures and irreversibly record them by changing their signal for a readout at any later time.

Of particular interest are small-sized temperature indicators that can be easily integrated into any arbitrary object and subsequently monitor the objects’ temperature history autonomously, i.e. without power supply. Accordingly, the indicators’ signal readout permits to verify successful bonding processes, to uncover temperature peaks in global supply chains, or to localize hot spots in electronic devices.

Prof. Dr. Karl Mandel (Professorship for Inorganic Chemistry) and his research group have succeeded in developing a new type of temperature indicator in the form of a micrometer-sized particle, which differs from previously established, mostly optical indicators mainly due to its innovative magnetic readout method. The results of the research work have now been published in the journal Advanced Materials (“Recording Temperature with Magnetic Supraparticles”).

Jul 7, 2022

Stanford Biochemists Successfully Change How the Brain Communicates With Itself

Posted by in categories: chemistry, neuroscience

While you read this sentence, the neurons in your brain are communicating with one another by firing off quick electrical signals. They communicate with one another via synapses, which are tiny, specialized junctions.

There are many various kinds of synapses that develop between neurons, including “excitatory” and “inhibitory,” and scientists are still unsure of the specific methods by which these structures are formed. A biochemistry team has provided significant insight into this topic by demonstrating that the types of chemicals produced from synapses ultimately determine which types of synapses occur between neurons.

Jul 7, 2022

Researchers build longest, highly conductive molecular nanowire

Posted by in categories: chemistry, nanotechnology

As our devices get smaller and smaller, the use of molecules as the main components in electronic circuitry is becoming ever more critical. Over the past 10 years, researchers have been trying to use single molecules as conducting wires because of their small scale, distinct electronic characteristics, and high tunability. But in most molecular wires, as the length of the wire increases, the efficiency by which electrons are transmitted across the wire decreases exponentially. This limitation has made it especially challenging to build a long molecular wire—one that is much longer than a nanometer—that actually conducts electricity well.

Columbia researchers announced that they have built a nanowire that is 2.6 nanometers long, shows an unusual increase in conductance as the wire length increases, and has quasi-metallic properties. Its excellent conductivity holds great promise for the field of molecular electronics, enabling electronic devices to become even tinier.

The study is published in Nature Chemistry (“Highly conducting single-molecule topological insulators based on mono-and di-radical cations”).

Jul 6, 2022

CRISPR-Cas9 Genome Editing Technology

Posted by in categories: bioengineering, biotech/medical, chemistry, internet

We’ve learned about a few techniques in biotechnology already, but the CRISPR-Cas9 system is one of the most exciting ones. Inspired by bacterial immune response to viruses, this site-specific gene editing technique won the Nobel prize in chemistry in 2020, going to Jennifer Doudna and Emmanuelle Charpentier. How did they develop this method? What can it be used for? Let’s get the full story!

Select images provided by BioRender.com.

Continue reading “CRISPR-Cas9 Genome Editing Technology” »