Menu

Blog

Archive for the ‘chemistry’ category: Page 187

Jul 22, 2022

Chemistry breakthrough offers unprecedented control over atomic bonds

Posted by in categories: chemistry, nanotechnology, particle physics

In what’s being hailed as an important first for chemistry, an international team of scientists has developed a new technology that can selectively rearrange atomic bonds within a single molecule. The breakthrough allows for an unprecedented level of control over chemical bonds within these structures, and could open up some exciting possibilities in what’s known as molecular machinery.

Molecules are made up of clusters of atoms, and are the product of the nature and arrangement of those atoms within. Where oxygen molecules we breathe feature the same repeating type of atom, sugar molecules are made of carbon, oxygen and hydrogen.

Scientists have been pursuing something called “selective chemistry” for some time, with the objective of forming exactly the type of chemical bonds between atoms that they want. Doing so could lead to the creation of complex molecules and devices that can be designed for specific tasks.

Jul 22, 2022

Silk offers alternative to some microplastics

Posted by in categories: chemistry, engineering, food

Microplastics, tiny particles of plastic that are now found worldwide in the air, water, and soil, are increasingly recognized as a serious pollution threat, and have been found in the bloodstream of animals and people around the world.

Some of these microplastics are intentionally added to a variety of products, including agricultural chemicals, paints, cosmetics, and detergents—amounting to an estimated 50,000 tons a year in the European Union alone, according to the European Chemicals Agency. The EU has already declared that these added, nonbiodegradable microplastics must be eliminated by 2025, so the search is on for suitable replacements, which do not currently exist.

Now, a team of scientists at MIT and elsewhere has developed a system based on silk that could provide an inexpensive and easily manufactured substitute. The new process is described in a paper in the journal Small, written by MIT postdoc Muchun Liu, MIT professor of civil and environmental engineering Benedetto Marelli, and five others at the chemical company BASF in Germany and the U.S.

Jul 21, 2022

Scientists Have Created Genetically Modified Drought-Resistant Plants

Posted by in categories: biological, chemistry, genetics

Proteins serve a variety of purposes in plants in addition to being the fundamental building blocks of life. More than 20 billion protein molecules make up a typical plant cell, helping to stabilize its structure and sustain cellular metabolism.

Researchers at Heidelberg University’s Centre for Organismal Studies have shed light on a biological process that increases the life of plant proteins. They have now discovered a crucial protein, called N-terminal acetylation, that controls this mechanism. The study’s findings were published in the journals Molecular Plant and Science Advances.

N-terminal acetylation is a chemical marker that develops during the production of proteins. Plants do this by affixing an acetic acid.

Jul 20, 2022

Chiral molecules beat magnets when it comes to boosting water splitting

Posted by in categories: chemistry, energy, nanotechnology

New electrocatalysis electrodes have been created that are simpler and cheaper than conventional ones, and can substantially increase the efficiency of water splitting. Decorated with chiral molecules like helicenes, these devices double the activity of the oxygen evolution reaction, the bottleneck of the process, and improve its selectivity.

‘With electrocatalysis, we [can] use electrons from renewable sources [like solar and wind] to produce clean chemicals and fuels,’ explains Magalí Lingenfelder from the Max Planck–EPFL laboratory for molecular nanoscience and technology, in Switzerland, who led the study. In this work, her team focused on the oxygen evolution reaction. ‘It’s the bottleneck of water splitting,’ she says. ‘We wanted to increase its performance with cheap, simple solutions.’

Jul 20, 2022

Material with zero thermal expansion

Posted by in categories: chemistry, physics

It’s a basic rule of chemistry and physics: when you heat things up, they get bigger. While there are exceptions (like water and ice), it’s difficult to find a material with zero thermal expansion.

But new research from the University of New South Wales and the Australian Nuclear Science and Technology Organisation has found a compound that doesn’t thermally expand – at least, not between −269°C and 1126°C.

The researchers examined a substance made from scandium, aluminium, tungsten and oxygen (Sc1.5 Al0.5 W3 O12), bonded together in a crystalline structure.

Jul 20, 2022

Exploiting the quantum mechanically derived force field for functional materials simulations

Posted by in categories: chemistry, computing, quantum physics

Circa 2021 force field this can also shield the earth or cities.


The computational design of functional materials relies heavily on large-scale atomistic simulations. Such simulations are often problematic for conventional classical force fields, which require tedious and time-consuming parameterization of interaction parameters. The problem can be solved using a quantum mechanically derived force field (QMDFF)—a system-specific force field derived directly from the first-principles calculations. We present a computational approach for atomistic simulations of complex molecular systems, which include the treatment of chemical reactions with the empirical valence bond approach. The accuracy of the QMDFF is verified by comparison with the experimental properties of liquid solvents.

Jul 19, 2022

Researchers create order from quantum chaos

Posted by in categories: chemistry, nanotechnology, quantum physics

In a new paper in PNAS, “Triplet-Pair Spin Signatures From Macroscopically Aligned Heteroacenes in an Oriented Single Crystal,” National Renewable Energy Laboratory (NREL) researchers Brandon Rugg, Brian Fluegel, Christopher Chang, and Justin Johnson tackle one of the fundamental problems in quantum information science: how to produce pure elements of quantum information—that is, those that start and remain in a well-defined “spin state”—at practical temperatures.

Quantum information science has the potential to revolutionize computation, sensing, and communications. But many of these applications are still beyond reach because of the challenges of producing units of quantum information, or qubits, without relying on extremely low temperatures to maintain their purity. Current approaches to identifying suitable quantum materials tend to rely on trial and error.

“The field of developing new and materials [for ] sometimes progresses through ad hoc methods and serendipity. ‘This material just so happens to work better than the other one’—we saw a lot of that happening, and decided ultimately that it was not going to suffice for a project where the goal was to limit the set of possible options,” said Justin Johnson, a researcher in NREL’s Chemistry and Nanoscience Center. “We wanted to have the theory provide us with firm guidelines about what should happen.”

Jul 19, 2022

A chemical breakthrough could unlock the true potential of powdered hydrogen as a fuel

Posted by in categories: chemistry, energy

Jul 19, 2022

Mechanochemical breakthrough unlocks cheap, safe, powdered hydrogen

Posted by in categories: chemistry, energy, nanotechnology

Australian scientists say they’ve made a “eureka moment” breakthrough in gas separation and storage that could radically reduce energy use in the petrochemical industry, while making hydrogen much easier and safer to store and transport in a powder.

Nanotechnology researchers, based at Deakin University’s Institute for Frontier Materials, claim to have found a super-efficient way to mechanochemically trap and hold gases in powders, with potentially enormous and wide-ranging industrial implications.

Mechanochemistry is a relatively recently coined term, referring to chemical reactions that are triggered by mechanical forces as opposed to heat, light, or electric potential differences. In this case, the mechanical force is supplied by ball milling – a low-energy grinding process in which a cylinder containing steel balls is rotated such that the balls roll up the side, then drop back down again, crushing and rolling over the material inside.

Jul 19, 2022

New ‘future-proof’ method could remove phosphorus from wastewater using bacteria

Posted by in categories: bioengineering, chemistry, climatology, physics, sustainability

A recent study from the Singapore Centre for Environmental Life Sciences Engineering (SCELSE) at Nanyang Technological University (NTU) and published in Wa | Chemistry And Physics.


This study is intriguing since one of the results of climate change is increasing water temperatures, so removing phosphorus from such waters will prove invaluable in the future, with this study appropriately being referred to as a “future-proof” method.

Continue reading “New ‘future-proof’ method could remove phosphorus from wastewater using bacteria” »