Menu

Blog

Archive for the ‘chemistry’ category: Page 143

Jan 25, 2023

Researchers propose combining classical and quantum optics for super-resolution imaging

Posted by in categories: biological, chemistry, quantum physics

The ability to see invisible structures in our bodies, like the inner workings of cells, or the aggregation of proteins, depends on the quality of one’s microscope. Ever since the first optical microscopes were invented in the 17th century, scientists have pushed for new ways to see more things more clearly, at smaller scales and deeper depths.

Randy Bartels, professor in the Department of Electrical Engineering at Colorado State University, is one of those scientists. He and a team of researchers at CSU and Colorado School of Mines are on a quest to invent some of the world’s most powerful light microscopes—ones that can resolve large swaths of biological material in unimaginable detail.

The name of the game is super–resolution microscopy, which is any optical imaging technique that can resolve things smaller than half the wavelength of light. The discipline was the subject of the 2014 Nobel Prize in Chemistry, and Bartels and others are in a race to keep circumventing that to illuminate biologically important structures inside the body.

Jan 24, 2023

Researchers Find Way To Reverse Aging

Posted by in categories: biotech/medical, chemistry, genetics, life extension, neuroscience

Recent experiments conducted in Boston labs have shown reverse aging results among mice and could show similar results in people.

The combined experiments — which were conducted during a span of 13 years — published Thursday (January 12) in the scientific journal Cell reported that old, blind mice regained eyesight, developed smarter brains and built healthier muscle and kidney tissue, challenging the theory that DNA was the only cause of aging, as it proved that chemical and structural changes to chromatin played a factor without altering genetic code.

The research showed that a breakdown in epigenetic information caused the mice to age and the restoration of the epigenome reversed aging effects.

Jan 24, 2023

Battery assembly robot brings factory consistency to the lab

Posted by in categories: chemistry, robotics/AI, sustainability

Researchers have developed a robot that brings speed, agility and reproducibility to laboratory-scale coin cell batteries.

Until now, laboratories studying battery technology have had to choose between the freedom to iterate and optimise battery chemistry by manually assembling each individual cell, and the reproducibility and speed of large-scale production. AutoBass (Automated battery assembly system), the first laboratory-scale coin cell assembly robot of its kind, is designed to bridge this gap.

Developed by a team from Helmholtz Institute Ulm and Karlsruhe Institute of Technology in Germany, AutoBass promises to improve characterisation of coin cell batteries and promote reproducibility by photographing each individual cell at key points in the assembly process. It produces batches of 64 cells a day.

Jan 24, 2023

Fluidic chemical systems can mimic the way the brain stores memories

Posted by in categories: biological, chemistry, robotics/AI

The brain is often regarded as a soft-matter chemical computer, but the way it processes information is very different to that of conventional silicon circuits. Three groups now describe chemical systems capable of storing information in a manner that resembles the way that neurons communicate with one another at synaptic junctions. Such ‘neuromorphic’ devices could provide very-low-power computation and act as interfaces between conventional electronics and ‘wet’ chemical systems, potentially including neurons and other living cells themselves.

At a synapse, the electrical pulse or action potential that travels along a neuron triggers the release of neurotransmitter molecules that bridge the junction to the next neuron, altering the state of the second neuron by making it more or less likely to fire its own action potential. If one neuron repeatedly influences another, the connection between them may become strengthened. This is how information is thought to become imprinted as a memory, a process called Hebbian learning. The ability of synapses to adjust their connectivity in response to input signals is called plasticity, and in neural networks it typically happens on two timescales. Short-term plasticity (STP) creates connectivity patterns that fade quite fast and are used to filter and process sensory signals, while long-term plasticity (LTP, also called long-term potentiation) imprints more long-lived memories. Both biological processes are still imperfectly understood.

Neuromorphic circuits that display such learning behaviour have been developed previously using solid-state electronic devices called memristors, two-terminal devices in which the relationship between the current that passes through and the voltage applied depends on the charge that passed through previously. Memristors may retain this memory even when no power is applied – they are ‘non-volatile’ – meaning that neuromorphic circuits can potentially process information with very low power consumption, a feature crucial to the way our brains can function without overheating. Typically, memristor behaviour manifests as a current–voltage relationship on a loop, and the response varies depending on whether the voltage is increasing or decreasing: a property called hysteresis, which itself represents a kind of memory as the device behaviour is contingent on its history.

Jan 23, 2023

Alleviating Symptoms: Brain Stimulation Could Help Treat Alzheimer’s Disease

Posted by in categories: biotech/medical, chemistry, neuroscience

Alzheimer’s disease, which is the most common form of dementia, is challenging to treat. A possible therapy is deep brain stimulation delivered by a pacemaker-like device. A team of researchers from Charité – Universitätsmedizin Berlin discovered that stimulating a specific network in the brains of Alzheimer’s patients can decrease their symptoms. The study, published in the journal Nature Communications.

<em>Nature Communications</em> is a peer-reviewed, open-access, multidisciplinary, scientific journal published by Nature Portfolio. It covers the natural sciences, including physics, biology, chemistry, medicine, and earth sciences. It began publishing in 2010 and has editorial offices in London, Berlin, New York City, and Shanghai.

Jan 23, 2023

New Research Could Link Evolution of Complex Life to Genetic “Dark Matter”

Posted by in categories: biological, chemistry, cosmology, evolution, genetics, neuroscience, physics

Octopuses have fascinated scientists and the public with their remarkable intelligence, from using tools to engaging in creative play, problem-solving, and even escaping from aquariums. Now, their cognitive abilities may provide significant insight into understanding the evolution of complex life and cognition, including the human brain.

An international team of researchers from Dartmouth College and the Max Delbrück Center (MDC) in Germany has published a study in the journal Science Advances.

<em>Science Advances</em> is a peer-reviewed, open-access scientific journal that is published by the American Association for the Advancement of Science (AAAS). It was launched in 2015 and covers a wide range of topics in the natural sciences, including biology, chemistry, earth and environmental sciences, materials science, and physics.

Jan 23, 2023

Scientists explain emotional ‘blunting’ caused by common antidepressants

Posted by in categories: biotech/medical, chemistry, neuroscience

Scientists have worked out why common anti-depressants cause around half of users to feel emotionally “blunted.” In a study published today in Neuropsychopharmacology, they show that the drugs affect reinforcement learning, an important behavioral process that allows people to learn from their environment.

According to the NHS, more than 8.3 million patients in England received an in 2021/22. A widely used class of antidepressants, particularly for persistent or severe cases, is (SSRIs). These drugs target serotonin, a chemical that carries messages between in the brain and has been dubbed the “pleasure chemical.”

One of the widely reported side effects of SSRIs is “blunting,” where patients report feeling emotionally dull and no longer finding things as pleasurable as they used to. Between 40% and 60% of patients taking SSRIs are believed to experience this side effect.

Jan 22, 2023

A new way to remove contaminants from nuclear wastewater

Posted by in categories: chemistry, engineering, nuclear energy, particle physics

I posted about Japan releasing radioactive water, and thought it was a bad idea, because of this MIT revelation.


Nuclear power continues to expand globally, propelled, in part, by the fact that it produces few greenhouse gas emissions while providing steady power output. But along with that expansion comes an increased need for dealing with the large volumes of water used for cooling these plants, which becomes contaminated with radioactive isotopes that require special long-term disposal.

Now, a method developed at MIT provides a way of substantially reducing the volume of contaminated water that needs to be disposed of, instead concentrating the contaminants and allowing the rest of the water to be recycled through the plant’s cooling system. The proposed system is described in the journal Environmental Science and Technology, in a paper by graduate student Mohammad Alkhadra, professor of chemical engineering Martin Bazant, and three others.

Continue reading “A new way to remove contaminants from nuclear wastewater” »

Jan 22, 2023

New method for designing nanoscale 3D materials could make fuel cells more efficient

Posted by in categories: chemistry, energy, nanotechnology, sustainability

Scientists from UNSW Sydney have demonstrated a novel technique for creating tiny 3D materials that could eventually make fuel cells like hydrogen batteries cheaper and more sustainable.

In the study published in Science Advances (“Synthesis of hierarchical metal nanostructures with high electrocatalytic surface areas”), researchers from the School of Chemistry at UNSW Science show it’s possible to sequentially ‘grow’ interconnected hierarchical structures in 3D at the nanoscale which have unique chemical and physical properties to support energy conversion reactions.

In chemistry, hierarchical structures are configurations of units like molecules within an organisation of other units that themselves may be ordered. Similar phenomena can be seen in the natural world, like in flower petals and tree branches. But where these structures have extraordinary potential is at a level beyond the visibility of the human eye – at the nanoscale.

Jan 21, 2023

In the core of the cell: New insights into the utilization of nanotechnology-based drugs

Posted by in categories: biotech/medical, chemistry, nanotechnology

Novel drugs, such as vaccines against COVID-19, among others, are based on drug transport using nanoparticles. Whether this drug transport is negatively influenced by an accumulation of blood proteins on the nanoparticle’s surface was not clarified for a long time.

Scientists at the Max Planck Institute for Polymer Research have now followed the path of such a particle into a cell using a combination of several microscopy methods. They were able to observe a cell-internal process that effectively separates blood components and .

Nanoparticles are a current field of research and it is impossible to imagine without them. They serve as microscopic drug capsules that are less than a thousandth of a millimeter in diameter. Among other things, they are used in current vaccines against COVID-19 to effectively deliver active ingredients to where they are actually needed. In most cases, the capsules dock onto cells, are enveloped by them, and are absorbed into them. Inside the cell, can then open the capsules, releasing the active ingredient.