Menu

Blog

Archive for the ‘biotech/medical’ category: Page 2562

Aug 15, 2016

Researchers discover that DNA naturally fluoresces

Posted by in category: biotech/medical

DNA naturalmente fluorescente.

Professores Vadim Backman, Hao Zhang, e Cheng Sun descobriram que as estruturas de macromoléculas em células vivas, de fato, naturalmente fluorescente. Esta descoberta pode abrir a próxima fronteira da descoberta biológica com a pavimentação de uma nova maneira para, imagiologia nanoscopic super-resolução sem rótulo e expandir a compreensão dos processos biológicos.

Read more

Aug 15, 2016

Stroke Survivor Walks Again After Doctors Inject Stem Cells Directly into Brain

Posted by in categories: biotech/medical, neuroscience

A surgical procedure that involves drilling holes and injecting stem cells into stroke patients’ brains seems to have contributed to a wheelchair-bound stroke patient regaining the ability to walk. Despite the major recovery exhibited by patients, further study must be made to investigate the true impact.

Researchers from Stanford University were “stunned” at the positive results they obtained after injecting stem cells directly into stroke patients’ brains. The discovery has created a talking point in the neuroscience community, causing researchers to re-visit and re-evaluate the notion that brain damage is permanent and irreversible.

Surgical Procedure

Continue reading “Stroke Survivor Walks Again After Doctors Inject Stem Cells Directly into Brain” »

Aug 15, 2016

Samsung plugs IBM’s brain-imitating chip into an advanced sensor

Posted by in categories: biotech/medical, computing, mobile phones, neuroscience

IBM’s TrueNorth, a so-called “cognitive chip,” remarkably resembles the human brain: its 4,096 cores combine to create about a million digital neurons and 256 million synapse connections. In short, like everyone’s favorite complex organ, it operates extremely quickly and consumes far less energy than typical processors. Samsung has taken the chip and plugged it into its Dynamic Vision Sensor (DVS) to process digital imagery at a blindingly fast rate.

Typical digital cameras max out 120 frames per second, but a DVS-equipped gadget can capture an incredible 2,000 fps. Unlike a conventional sensor, each pixel on Samsung’s only reacts if it needs to report a change in what it’s seeing, according to CNET. That high speed could be useful for creating 3D maps or gesture controls. At a press event on Thursday in San Jose, the company demonstrated its ability to control a TV as it recognized hand waves and finger pinches from ten feet away.

DVS is efficient like its TrueNorth chip base, and only consumes about 300 milliwatts of power. That’s about a hundredth the drain of a laptop’s processor and a tenth of a phone’s, a Samsung VP said at the event. But we still have a ways to go before we approach the minimal power requirements of the human brain, he said, which can process some tasks at 100 million times less power than a computer.

Continue reading “Samsung plugs IBM’s brain-imitating chip into an advanced sensor” »

Aug 15, 2016

Researchers devise method for bone marrow transplants without using chemotherapy

Posted by in category: biotech/medical

Scientists have devised a way to destroy blood stem cells in mice without using chemotherapy or radiotherapy, both of which have toxic side effects.

Read more

Aug 15, 2016

A New Vaccine Can Be Customized To Fight Just About Anything!

Posted by in category: biotech/medical

Read more

Aug 15, 2016

Intraventricular Heart Pump

Posted by in category: biotech/medical

This revolutionary new heart pump could save thousands of lives.

Read more

Aug 14, 2016

China rockets to top of supercomputing charts with homegrown tech

Posted by in categories: biotech/medical, supercomputing

Lookout world Chine Tech is rising and nothing or no one will stop it now. The real question is how soon with the world’s tech valley hub be in China? The US has enjoyed for many decades being the world’s top technology center. However, China for the past 20+ years has been executing their world footprint in owning the title as the top global economic power. In the past we have seen them take over consumer goods manufacturing, pharma (especially generic drugs), and the latest is tech. Wonder what is next?


TOKYO — China has jumped to the front ranks of the supercomputing powers, with its Sunway TaihuLight, powered by domestically developed chips, recently recognized as the fastest computer in the world.

In its debut on the Top500 list of the world’s fastest supercomputers in June, the Sunway TaihuLight overwhelmed such rivals as the Tianhe-2, a Chinese supercomputer powered by Intel chips that has claimed the No. 1 spot on the past six Top500 lists. Furthermore, it was the first time for China to surpass the U.S. in the total number of systems on the list.

Read more

Aug 14, 2016

Fun With DNA

Posted by in categories: biotech/medical, computing

We have seen the beauty of DNA in medical advancements, tech for storage, and even in designer fashion, Now, lets play with Art and art expression.


Tiny computers, microscopic art, bringing back the dodo—the future uses of the double helix.

Read more

Aug 14, 2016

Revolutionary computer program could change chemistry forever

Posted by in categories: biotech/medical, chemistry, computing

Nice.


Software can tell chemists how to make new molecules from scratch and its inventors claim it has already mapped out a cheaper route to a blockbuster drug.

Continue reading “Revolutionary computer program could change chemistry forever” »

Aug 14, 2016

Novel Approach to Biological Circuit Design Allows Scientists to Track Cell Lineages

Posted by in categories: bioengineering, biotech/medical, genetics, neuroscience

By Kevin Kang

A recent article in ScienceDaily reviews a new approach in Synthetic Biology that allows cells to respond to a series of input stimuli and simultaneously remember the order of these stimuli over many generations. As noted by the senior investigator, Timothy Lu from MIT, combining computation with memory creates complex cellular circuits that can perform logic functions and store memories of events by encoding them in their DNA (1,2). In their current work, Dr. Lu and his colleagues created cells that can remember and respond to three different inputs, including chemical signals in a particular order, and in the future may be able to incorporate even more inputs (1,2,3). The cellular machines thus created are referred to as biological “state machines” because they exist in different states depending on the identity and order of inputs that they receive. The state machines rely on enzymes called recombinases. When activated by a specific input, recombinases either delete or invert a particular segment of DNA depending on the orientation of two DNA target sequences known as recognition sites. The segment of DNA between these sites may have recognition sites for other recombinases that respond to different inputs. Flipping or deleting these sites permanently changes what will happen if a second or third recombinase is later activated. Therefore, a cell’s history is determined by sequencing its DNA. In a version of this system with just two inputs, there are five possible states for this circuit: states corresponding to no input, input A alone, input B alone, A followed by B, and B followed by A. Dr. Lu’s team in MIT has designed and built circuits that record up to three inputs, in which sixteen states are possible (1,2).

Besides creating circuits that record events in a cell’s life and then transmit these memories to future generations, the researchers from MIT also placed genes into the array of recombinase binding sites along with genetic regulatory elements. In these circuits, when recombinases rearrange the DNA, the circuits record the information as well as control which genes get turned on and off. Lu’s lab tested this work in bacteria by color coding the identity and order of input stimuli, so input A followed by B would would lead to bacteria fluorescing red and green, but input B followed by A would lead to red and blue fluorescence. Hence, these techniques can be used not only to record the states that the cells experience over time, but also to deploy in state-dependent gene expression programs (1,2).

Continue reading “Novel Approach to Biological Circuit Design Allows Scientists to Track Cell Lineages” »