We demonstrate reversible cycle stability for up to 200 000 cycles with 94–96% average Coulombic efficiency for symmetrical δ-MnO2 nanowire capacitors operating across a 1.2 V voltage window in a poly(methyl methacrylate) (PMMA) gel electrolyte. The nanowires investigated here have a Au@δ-MnO2 core@shell architecture in which a central gold nanowire current collector is surrounded by an electrodeposited layer of δ-MnO2 that has a thickness of between 143 and 300 nm. Identical capacitors operating in the absence of PMMA (propylene carbonate (PC), 1.0 M LiClO4) show dramatically reduced cycle stabilities ranging from 2000 to 8,000 cycles. In the liquid PC electrolyte, the δ-MnO2 shell fractures, delaminates, and separates from the gold nanowire current collector. These deleterious processes are not observed in the PMMA electrolyte.
Comments are closed.