Menu

Blog

Page 8930

Apr 18, 2019

Powerful CRISPR cousin accidentally mutates RNA while editing DNA target

Posted by in category: biotech/medical

When researchers first reported 3 years ago that they had created base editors, a version of the powerful genome-editing tool CRISPR, excitement swirled around their distinct powers to more subtly alter DNA compared with CRISPR itself. But the weaknesses of base editors have become increasingly apparent, and a new study shows they can also accidentally mutate the strands of RNA that help build proteins or perform other key cellular tasks. Researchers say this could complicate developing safe therapies with the technology and hamper other research applications.

Human diseases from sickle cell to Tay-Sachs are caused by a single mutation to one of the four DNA bases—adenine, guanine, cytosine, and thymine—and CRISPR has often had difficulty swapping out the bad actors. That’s in part because CRISPR cuts double-stranded DNA at targeted places and then relies on finicky cell repair mechanisms to do the heavy lifting of inserting a corrected DNA sequence for a mutation. Base editors, in contrast, chemically change one DNA base into another with enzymes called deaminases, which doesn’t require a cut or help from the cell.

Base editors, which adapt key components of CRISPR to reach targeted places in the genome, have been shown to have many off-target effects on DNA. But until now, its effects on RNA, which contains three of the same bases as DNA, had escaped scrutiny. So J. Keith Joung, a pathologist and molecular biologist at the Massachusetts General Hospital in Boston, led a team that put base editors into human liver and kidney cells. Their finding: Deaminases can also alter RNA, the group reports today in.

Read more

Apr 18, 2019

NASA designed a drone that could fly around Mars

Posted by in categories: drones, space


Apr 18, 2019

Planck reveals link between active galaxies and their dark matter environment

Posted by in categories: cosmology, evolution

Scientists have used the tiny distortions imprinted on the cosmic microwave background by the gravity of matter throughout the universe, recorded by ESA’s Planck satellite, to uncover the connection between the luminosity of quasars – the bright cores of active galaxies – and the mass of the much larger ‘halos’ of dark matter in which they sit. The result is an important confirmation for our understanding of how galaxies evolve across cosmic history.

Most in the universe are known to host , with masses of millions to billions of times the Sun’s mass, at their cores. The majority of these cosmic monsters are ‘dormant’, with little or no activity going on near them, but about one percent are classified as ‘active’, accreting from their surroundings at very intense rates. This accretion process causes material in the black hole’s vicinity to shine brightly across the electromagnetic spectrum, making these active galaxies, or , some of the brightest sources in the cosmos.

While it is still unclear what activates these black holes, switching on and off their phase of intense accretion, it is likely that quasars play an important role in regulating the evolution of galaxies across cosmic history. For this reason, it is crucial to understand the relationship between quasars, their host galaxies, and their environment on even larger scales.

Continue reading “Planck reveals link between active galaxies and their dark matter environment” »

Apr 18, 2019

This Wearable Prototype Can See Through Skin To Scan Your Blood

Posted by in categories: biotech/medical, information science, wearables

Circa 2015


Echo Labs uses light and a clever algorithm to measure oxygen and CO2 in the blood stream.

Read more

Apr 18, 2019

LG G8 ThinQ Review: Flash-Bang, Scan Your Blood

Posted by in category: biotech/medical

LG’s latest flagship looks cool, but that feeling wears off… quickly.

Read more

Apr 18, 2019

Non-invasive blood glucose monitoring using near-infrared spectroscopy

Posted by in category: biotech/medical

Diabetics can say goodbye to the finger-prick if we design non-invasive glucometers as described here!

Read more

Apr 18, 2019

How This New Refrigerator Could Help Prevent the World From Getting Warmer

Posted by in category: futurism

Keeping things cool is making the world hot. Phononic wants to help fix that.

Read more

Apr 18, 2019

Boosting muscle stem cells to treat muscular dystrophy and aging muscles

Posted by in categories: biotech/medical, life extension

Lying within our muscles are stem cells, invisible engines that drive the tissue’s growth and repair. Understanding the signal(s) that direct muscle stem cells to spring into action could uncover new ways to promote muscle growth. However, these mechanisms are poorly understood.

Now, scientists from Sanford Burnham Prebys have uncovered a molecular signaling pathway involving Stat3 and Fam3a proteins that regulates how decide whether to self-renew or differentiate—an insight that could lead to muscle-boosting therapeutics for muscular dystrophies or age-related muscle decline. The study was published in Nature Communications.

“Muscle stem cells can ‘burn out’ trying to regenerate tissue during the or due to chronic muscle disease,” says Alessandra Sacco, Ph.D., senior author of the paper and associate professor in the Development, Aging and Regeneration Program at Sanford Burnham Prebys. “We believe we have found promising drug targets that direct to ‘make the right decision’ and stimulate muscle repair, potentially helping muscle tissue regeneration and maintaining tissue function in such as muscular dystrophy and aging.”

Continue reading “Boosting muscle stem cells to treat muscular dystrophy and aging muscles” »

Apr 18, 2019

Need more energy storage? Just hit ‘print’

Posted by in categories: energy, nanotechnology, transportation

Researchers from Drexel University and Trinity College in Ireland, have created ink for an inkjet printer from a highly conductive type of two-dimensional material called MXene. Recent findings, published in Nature Communications, suggest that the ink can be used to print flexible energy storage components, such as supercapacitors, in any size or shape.

Conductive inks have been around for nearly a decade and they represent a multi-hundred million-dollar market that is expected to grow rapidly into the next decade. It’s already being used to make the radiofrequency identification tags used in highway toll transponders, circuit boards in portable electronics and it lines car windows as embedded radio antennas and to aid defrosting. But for the technology to see broader use, conductive inks need to become more conductive and more easily applied to a range of surfaces.

Yury Gogotsi, Ph.D., Distinguished University and Bach professor in Drexel’s College of Engineering, Department of Materials Science and Engineering, who studies the applications of new materials in technology, suggests that the ink created in Drexel’s Nanomaterials Institute is a significant advancement on both of these fronts.

Continue reading “Need more energy storage? Just hit ‘print’” »

Apr 18, 2019

Graphene Terahertz Cameras Could Become Common

Posted by in categories: internet, mobile phones, security

EU researchers have developed a graphene-enabled detector for terahertz light that is faster and more sensitive than existing room-temperature technologies. This can lead to a fully digital low-cost terahertz camera system. This could be as cheap as the camera inside the smartphone, since such a detector has proven to have a very low power consumption and is fully compatible with CMOS technology.

Detecting terahertz (THz) light is extremely useful for two main reasons. Firstly, THz technology is becoming a key element in applications regarding security (such as airport scanners), wireless data communication, and quality control, to mention just a few. However, current THz detectors have shown strong limitations in terms of simultaneously meeting the requirements for sensitivity, speed, spectral range, being able to operate at room temperature.

Secondly, it is a very safe type of radiation due to its low-energy photons, with more than a hundred times less energy than that of photons in the visible light range.

Continue reading “Graphene Terahertz Cameras Could Become Common” »